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Abstract

Stochastic convex optimization over an `1-bounded domain is ubiquitous in machine learning
applications such as LASSO but remains poorly understood when learning with differential
privacy. We show that, up to logarithmic factors the optimal excess population loss of any
(ε, δ)-differentially private optimizer is

√
log(d)/n +

√
d/εn. The upper bound is based on a

new algorithm that combines the iterative localization approach of Feldman et al. [FKT20]
with a new analysis of private regularized mirror descent. It applies to `p bounded domains for
p ∈ [1, 2] and queries at most n3/2 gradients improving over the best previously known algorithm
for the `2 case which needs n2 gradients. Further, we show that when the loss functions satisfy
additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors)
by
√

log(d)/n + (log(d)/εn)2/3. This bound is achieved by a new variance-reduced version of
the Frank-Wolfe algorithm that requires just a single pass over the data. We also show that the
lower bound in this case is the minimum of the two rates mentioned above.

1 Introduction

Convex optimization is one of the most well-studied problems in private data analysis. Existing
works have largely studied optimization problems over `2-bounded domains. However several ma-
chine learning applications, such as LASSO and minimization over the probability simplex, involve
optimization over `1-bounded domains. In this work we study the problem of differentially private
stochastic convex optimization (DP-SCO) over `1-bounded domains.

In this problem (DP-SCO), given n i.i.d. samples z1, . . . , zn from a distribution P , we wish to
release a private solution x ∈ X ⊆ Rd that minimizes the population loss F (x) = Ez∼P [f(x; z)] for a
convex function f over x. The algorithm’s performance is measured using the excess population loss
of the solution x, that is F (x)−miny∈X F (y). The optimal algorithms and rates for this problem—
even without privacy—have a crucial dependence on the geometry of the constraint set X and in
this work we focus on sets with bounded `1-diameter. Without privacy constraints, there exist
standard and efficient algorithms, such as mirror descent and exponentiated gradient decent, that
achieve the optimal excess loss O(

√
log(d)/n) [SSBD14]. The landscape of the problem, however,

with privacy constraints is not fully understood yet.
Most prior work on private convex optimization has focused on minimization of the empirical

loss F̂ (x) = 1
n

∑n
i=1 f(x; zi) over `2-bounded domains [CMS11; BST14; BFTT19]. Bassily et al.
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[BST14] show that the optimal excess empirical loss in this setting is Θ(
√
d/εn) up to log factors.

More recently, Bassily et al. [BFTT19] give an asymptotically tight bound of 1/
√
n +
√
d/(εn)

on the excess population loss in this setting using noisy gradient descent. Under mild smoothness
assumptions, Feldman et al. [FKT20] develop algorithms that achieve the optimal excess population
loss using n gradient computations.

In contrast, existing results for private optimization in `1-geometry do not achieve the optimal
rates for the excess population loss [KST12; JT14; TTZ15]. For the empirical loss, Talwar et al.
[TTZ15] develop private algorithms with Õ(1/(nε)2/3) excess empirical loss for smooth functions
and provide tight lower bounds when the dimension d is sufficiently high. These bounds can be con-
verted into bounds on the excess population loss using standard techniques of uniform convergence
of empirical loss to population loss, however these techniques can lead to suboptimal bounds as
there are settings where uniform convergence is lower bounded by Ω(

√
d/n) [Fel16]. Moreover, the

algorithm of Talwar et al. [TTZ15] has runtime O(n5/3) in the moderate privacy regime (ε = Θ(1))
which is prohibitive in practice. On the other hand, Jain and Thakurta [JT14] develop algorithms
for the population loss, however, their work is limited to generalized linear models and achieves a
sub-optimal rate Õ(1/n1/3).

In this work we develop private algorithms that achieve the optimal excess population loss in `1-
geometry, demonstrating that significant improvements are possible when the functions are smooth,
in contrast to `2-geometry where smoothness does not lead to better bounds. Specifically, for non-
smooth functions, we develop an iterative localization algorithm, based on noisy mirror descent
which achieves the optimal rate

√
log(d)/n +

√
d/εn. With additional smoothness assumptions,

we show that rates with logarithmic dependence on the dimension are possible using a private
variance-reduced Frank-Wolfe algorithm which obtains the rate

√
log(d)/n + (log(d)/εn)2/3 and

runs in linear (in n) time. This shows that privacy is essentially free in this setting even when
d � n and ε is as small as n−1/4. Finally, we show that similar rates are possible for general
`p-geometries for non-smooth functions when 1 ≤ p ≤ 2. Moreover, our algorithms query at
most O(n3/2) gradients which improves over the best known algorithms for the non-smooth case in
`2-geometry which require n2 gradients [FKT20].

The following two theorems summarize our upper bounds.

Theorem 1 (non-smooth functions). Let X ⊂ Rd be a convex body with `1 diameter less than 1.
Let f(·; z) be convex, Lipschitz with respect to ‖·‖1 for any z ∈ Z. There is an (ε, δ)-DP algorithm
that takes a dataset S ∈ Zn, queries at most O(log n · min(n3/2

√
log d, n2ε/

√
d)) and outputs a

solution x̂ that has

E[F (x̂)] ≤ min
x∈X

F (x) + Õ

(√
log d

n
+

√
d log3/2 d

nε

)
,

where the expectation is over the random choice of S and the randomness of the algorithm.

Theorem 2 (smooth functions). Let X = {x ∈ Rd : ‖x‖1 ≤ 1} be the `1-ball. Let f(·; z) be convex,
Lipschitz and smooth with respect to ‖·‖1 for any z ∈ Z. There is an (ε, δ)-DP linear time algorithm
that takes a dataset S ∈ Zn and outputs a solution x̂ that has

E[F (xK)] ≤ min
x∈X

F (x) + Õ

(√
log d

n
+

(
log d

nε

)2/3
)
,

where the expectation is over the random choice of S and the randomness of the algorithm.
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Before proceeding to review our algorithmic techniques, we briefly explain why the approaches
used to obtain optimal rates in `2-geometry [BFTT19; FKT20] do not work in our setting. One
of the most natural approaches to proving bounds for private stochastic optimization is to use the
generalization properties of differential privacy to derive population loss bounds for a private ERM
algorithm. This approach fails to give asymptotically optimal bounds for the `2 case [BST14], and
similarly gives suboptimal bounds for the `1 case. Broadly, there are two approaches that have
been used to get optimal bounds in the `2 case. An approach due to Bassily et al. [BFTT19]
uses stability of SGD on sufficiently smooth losses [HRS16] to get population loss bounds. These
stability results rely on contractivity of gradient descent steps. However, as we show in an example
that appears in Appendix A, the versions of mirror descent that are relevant to our setting do
not have this property. Feldman et al. [FKT20] derive generalization properties of their one pass
algorithms from online-to-batch conversion. However, their analysis still relies on contractivity to
prove the privacy guarantees of their algorithm. For their iterative localization approach Feldman
et al. [FKT20] use stability of the optimal solution to ERM in a different way to determine the
scale of the noise added in each phase of the algorithm. In `1 geometry the norm of the noise added
via this approach would overwhelm the signal (we discuss this in detail below).

We overview the key techniques we use to overcome these challenges below.

Mirror descent based Iterative Localization. In the non-smooth setting, we build on the
iterative localization framework of Feldman et al. [FKT20]. In this framework in each phase a
non-private optimization algorithm is used to solve a regularized version of the optimization prob-
lem. Regularization ensures that the output solution has small sensitivity and thus addition of
Gaussian noise guarantees privacy. By appropriately choosing the noise and regularization scales,
each phase reduces the distance to an approximate minimizer by a multiplicative factor. Thus after
a logarithmic number of phases, the current iterate has the desired guarantees. Unfortunately, ad-
dition of Gaussian noise (and other output perturbation techniques) results in sub-optimal bounds
in `1-geometry since the `1-error due to noise grows linearly with d. In contrast, the `2-error grows
as
√
d.

Instead of using output perturbation, we propose to use a private optimization algorithm in
each phase. Using stability properties of strongly convex functions, we show that if the output
of the private algorithm has sufficiently small empirical excess loss, then it has to be close to an
approximate minimizer. Specifically, we reduce the distance to a minimizer by a multiplicative
factor (relative to the initial conditions at that phase). We show that a private version of mirror
descent for strongly convex empirical risk minimization achieves sufficiently small excess empirical
loss giving us an algorithm that achieves the optimal rate for non-smooth loss functions. More
generally, this technique reduces the problem of DP-SCO to the problem of DP-ERM with strongly
convex objectives. We provide details and analysis of this approach in Section 3.

Dyadic variance-reduced Frank-Wolfe. Our second algorithm is based on recent progress
in stochastic optimization. Yurtsever et al. [YSC19] developed (non-private) variance-reduced
Frank-Wolfe algorithm that achieves the optimal Õ(1/

√
n) excess population loss improving on the

standard implementations of Frank-Wolfe that achieve excess population loss of Õ(1/n1/3). The
improvement relies on a novel variance reduction techniques that uses previous samples to improve
the gradient estimates at future iterates [FLLZ18]. This frequent reuse of samples is the main
challenge in developing a private version of the algorithm.

Inspired by the binary tree technique in the privacy literature [DNPR10; DNRR15], we develop
a new binary-tree-based variance reduction technique for the Frank-Wolfe algorithm. At a high
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level, the algorithm constructs a binary tree and allocates a set of samples to each vertex. The
gradient at each vertex is then estimated using the samples of that vertex and the gradients along
the path to the root. We assign more samples (larger batch sizes) to vertices that are closer to the
root, to account for the fact that they are reused in more steps of the algorithm. This ensures that
the privacy budget of samples in any vertex is not exceeded.

Using this privacy-aware design of variance-reduction, we rely on two tools to develop and
analyze our algorithm. First, similarly to the private Frank-Wolfe for ERM [TTZ15], we use the
exponential mechanism to privatize the updates. A Frank-Wolfe update chooses one of the vertices
of the constraint set (2d possibilities including signs for `1-balls) and therefore the application
of the exponential mechanism leads to a logarithmic dependence on the dimension d. This tool
together with the careful accounting of privacy losses across the nodes, suffices to get the optimal
bounds for the pure ε-DP case (δ = 0). To get the optimal rates for (ε, δ)-DP, we rely on recent
amplification by shuffling result for private local randomizers [FMT20]. To amplify privacy, we
view our algorithm as a sequence of local randomizers, each operating on a different subset of the
tree. Section 4 contains details of this algorithm.

In independent and concurrent work, Bassily et al. [BGN21] study differentially private al-
gorithms for stochastic optimization in `p-geometry. Similarly to our work, they build on mirror
descent and variance-reduced Frank-Wolfe algorithms to design private procedures for DP-SCO
albeit without the iterative localization scheme and the binary-tree-based sample allocation tech-
nique we propose. As a result, their algorithms achieve sub-optimal rates in some of the param-
eter regimes: in `1-geometry, they achieve excess loss of roughly log(d)/ε

√
n in contrast to the√

log(d)/
√
n + log(d)/(εn)2/3 rate of our algorithms. For 1 < p < 2, their algorithms have excess

loss of (up to log factors) min(d1/4/
√
n,
√
d/(εn3/4)), whereas our algorithms achieve the rate of√

d/εn. On the other hand, Bassily et al. [BGN21] develop a generalized Gaussian mechanism for
adding noise in `p-geometry. Their mechanism improves over the standard Gaussian mechanism
and can improve the rates of our algorithms for `p-geometry (Theorem 5) by a

√
log d factor. More-

over, they prove a lower bound for `p-geometries with 1 < p < 2 that establishes the optimality of
our upper bounds for 1 < p < 2.

2 Preliminaries

2.1 Stochastic Convex Optimization

We let S = (z1, . . . , zn) denote datasets where zi ∈ Z are drawn i.i.d. from a distribution P over
the domain Z. Let X ⊆ Rd be a convex set that denotes the set of parameter for the optimization
problem. Given a loss function f(x; z) : X × Z → R that is convex in x (for every z), we define
the population loss F (x) = Ez∼P [f(x; z)]. The excess population loss of a parameter x ∈ X is then
F (x)−miny∈X F (y). We also consider the empirical loss F̂ (x;S) = 1

n

∑n
i=1 f(x; zi) and the excess

empirical loss of x ∈ X is F̂ (x;S)−miny∈X F̂ (y;S). For a set X , we will denote its `p diameter by
diamp(X ) = supx,y∈X ‖x− y‖p.

As we are interested in general geometries, we define the standard properties (e.g., Lipschitz,
smooth and strongly convex) with respect to a general norm which are frequently used in the
optimization literature [Duc18].

Definition 2.1 (Lipschitz continuity). A function f : X → R is L-Lipschitz with respect to a norm
‖·‖ over X if for every x, y ∈ X we have |f(x)− f(y)| ≤ L ‖x− y‖.

A standard result is that L-Lipschitz continuity is equivalent to bounded (sub)-gradients, namely
that ‖g‖∗ ≤ L for all x ∈ X and sub-gradient g ∈ ∂f(x) where ‖·‖∗ is the dual norm of ‖·‖.
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Definition 2.2 (smoothness). A function f : X → R is β-smooth with respect to a norm ‖·‖ over
X if for every x, y ∈ X we have ‖∇f(x)−∇f(y)‖∗ ≤ β ‖x− y‖.

Definition 2.3 (strong convexity). A function f : X → R is λ-strongly convex with respect to a
norm ‖·‖ over X if for any x, y ∈ X we have f(x) + 〈∇f(x), y − x〉+ λ

2 ‖y − x‖
2 ≤ f(y).

Since we develop private versions of mirror descent, we define the Bregman divergence associated
with a differentiable convex function h : X → R to be Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉. We
require a definition of strong convexity relative to a function which has been used in several works
in the optimization literature [DSSST10; LFN18].

Definition 2.4 (relative strong convexity). A function f : X → R is λ-strongly convex relative to
h : X → R if for any x, y ∈ X , f(x) + 〈∇f(x), y − x〉+ λDh(y, x) ≤ f(y).

Note that if h(x) is convex, then h(x) is 1-strongly convex relative to h(x) according to this
definition. Moreover, the function f(x) = g(x) + h(x) is also 1-strongly convex relative to h(x) for
any convex function g(x).

2.2 Differential Privacy

We recall the definition of (ε, δ)-differential privacy.

Definition 2.5 ([DMNS06; DKMMN06]). A randomized algorithm A is (ε, δ)-differentially private
((ε, δ)-DP) if, for all datasets S,S ′ ∈ Zn that differ in a single data element and for all events O
in the output space of A, we have

Pr[A(S) ∈ O] ≤ eε Pr[A(S ′) ∈ O] + δ.

To simplify notation, we sometimes use the notion of (ε, δ)-indistinguishability; two random
variables X and Y are (ε, δ)-indistinguishable, denoted X ≈(ε,δ) Y , if for every O, Pr(X ∈ O) ≤
eε Pr[Y ∈ O] + δ and Pr(Y ∈ O) ≤ eε Pr[X ∈ O] + δ. When δ = 0, we use the shorter notation
ε-DP. We also use the following privacy composition results.

Lemma 2.1 (Basic composition [DR14]). If A1, . . . , Ak are randomized algorithms that each is
ε-DP, then their composition (A1(S), . . . , Ak(S)) is kε-DP.

Lemma 2.2 (Advanced composition [DR14]). If A1, . . . , Ak are randomized algorithms that each
is (ε, δ)-DP, then their composition (A1(S), . . . , Ak(S)) is (

√
2k log(1/δ′)ε+kε(eε−1), δ′+kδ)-DP.

3 Algorithms for Non-Smooth Functions

In this section, we develop an algorithm that builds on the iterative localization techniques of Feld-
man et al. [FKT20] to achieve optimal excess population loss for non-smooth functions over the
`1-ball. Instead of using output perturbation to solve the regularized optimization problems, our al-
gorithm uses general private algorithms for solving strongly convex ERM problems. This essentially
reduces the problem of privately minimizing the population loss to that of privately minimizing
a strongly convex empirical risk. In Section 3.1 we develop private versions of mirror descent
that achieve optimal bounds for strongly convex ERM problems, and in Section 3.2 we use these
algorithms in an iterative localization framework to obtain optimal bounds for the population loss.

5



Algorithm 1 Noisy Mirror Descent

Require: Dataset S = (z1, . . . , zn) ∈ Zn, convex set X , convex function h : X → R, step sizes
{ηk}Tk=1, batch size b, initial point x0, number of iterations T ;

1: for k = 1 to T do
2: Sample S1, . . . , Sb ∼ Unif(S)
3: Set ĝk = 1

b

∑b
i=1∇f(xk;Si) + ζi where ζi ∼ N(0, σ2Id) with σ = 100L

√
d log(1/δ)/bε

4: Find xk+1 := argminx∈X {〈ĝk, x− xk〉+ 1
ηk
Dh(x, xk)}

5: return x̄T = 1
T

∑T
k=1 xk (convex)

6: return x̂T = 2
T (T+1)

∑T
k=1 kxk (strongly convex)

3.1 Private Algorithms for Strongly Convex ERM

In this section, we consider empirical risk minimization for strongly convex functions and achieve
optimal excess empirical loss using noisy mirror descent (Algorithm 1).

Theorem 3. Let h : X → R be 1-strongly convex with respect to ‖·‖1, x? = argminx∈X F̂ (x;S),
and assume Dh(x?, x0) ≤ D2. Let f(x; z) be convex and L-Lipschitz with respect to ‖·‖1 for all

z ∈ Z. Setting 1 ≤ b, T = n2

b2
and ηk = D√

T
1√

L2+2σ2 log d
, Algorithm 1 is (ε, δ)-DP and

E[F̂ (x̄T ;S)− F̂ (x?;S)] ≤ LD ·O

(
b

n
+

√
d log d log 1

δ

nε

)
.

Moreover, if f(x; z) is λ-strongly convex relative to h(x), then setting ηk = 2
λ(k+1)

E[F̂ (x̂T ;S)− F̂ (x?;S)] ≤ O

(
L2b2

λn2
+
L2d log d log 1

δ

λn2ε2

)
.

To prove Theorem 3, we need the following standard results for the convergence of stochastic
mirror descent for convex and strongly convex functions.

Lemma 3.1 ([Duc18], Corollary 4.2.11). Assume h(x) is 1-strongly convex with respect to ‖·‖1.
Let f(x) be a convex function and x? = argminx∈X f(x). Consider the stochastic mirror descent

update xk+1 = argminx∈X {〈gk, x− xk〉+ 1
ηk
Dh(x, xk)} where E[gk] ∈ ∂f(xk) with E

[
‖gk‖2∞

]
≤ L2.

If ηk = η for all k then the average iterate x̄T = 1
T

∑T
i=1 xi has E[f(x̄T )− f(x?)] ≤ Dh(x?,x1)

Tη + ηL2

2 .

We also need the following result which states the rates of stochastic mirror descent for strongly
convex functions. Similar results appear in the optimization literature [LJSB12], though as the
statement we require is less common, we provide a proof in Appendix C.1.

Lemma 3.2. Under the same notation of Lemma 3.1, if f(x) is λ-strongly convex relative to h(x),

then setting ηk = 2
λ(k+1) the weighted average x̂T = 2

T (T+1)

∑T
k=1 kxk has E[f(x̂T )−f(x?)] ≤ L2

λ(T+1) .

We are now ready to prove Theorem 3.

Proof. The privacy proof follows directly using Moments accountant, that is, Theorem 1 in [ACG-
MMTZ16], by noting the the `2-norm of the gradients is bounded by ‖∇f(x; zi)‖2 ≤ ‖∇f(x; zi)‖∞

√
d ≤
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L
√
d for all x ∈ X and z ∈ Z. Now we prove the utility of the algorithm. To this end, we have

that E[‖ĝk‖2∞] ≤ 2L2 + 2E[‖ζk‖2∞] ≤ 2L2 + 4σ2 log d. Lemma 3.1 now implies that

E[F̂ (x̄T ;S)− F̂ (x?;S)] ≤ D2

Tη
+ ηL2 + 2ησ2 log d

≤ 2D
√

(L2 + 2σ2 log d)/T

≤ LD ·O

 b

n
+

√
d log d log 1

δ

nε

 ,

where the second inequality follows from the choice of η. For the second part, Lemma 3.2 implies
that

E[F̂ (x̂T ;S)− F̂ (x?;S)] ≤ L2

λ
O

(
b2

n2
+
d log d log 1

δ

n2ε2

)
.

3.2 Private Algorithms for SCO

Building on the noisy mirror descent algorithm of Section 3.1, in this section we develop a localiza-
tion based algorithm for the population loss that achieves the optimal bounds in `1 geometry. The
algorithm iteratively solves a regularized version of the (empirical) objective function using noisy
mirror decent (Algorithm 1). We present the full details in Algorithm 2 which enjoys the following
guarantees.

Algorithm 2 Localized Noisy Mirror Descent

Require: Dataset S = (z1, . . . , zn) ∈ Zn, constraint set X , step size η, initial point x0;
1: Set k = dlog ne, p = 1 + 1/ log d
2: for i = 1 to k do
3: Set εi = 2−iε, ni = 2−in, ηi = 2−4iη
4: Apply Algorithm 1 with (εi, δ)-DP, batch size bi = max(

√
ni/ log d,

√
d/εi), T = n2

i /b
2
i

and hi(x) = 1
p−1 ‖x− xi−1‖2p for solving the ERM over Xi = {x ∈ X : ‖x− xi−1‖p ≤

2Lηini(p− 1)}:

Fi(x) =
1

ni

ni∑
j=1

f(x; zj) +
1

ηini(p− 1)
‖x− xi−1‖2p

5: Let xi be the output of the private algorithm
6: return the final iterate xk

Theorem 4. Assume diam1(X ) ≤ D and f(x; z) is convex and L-Lipschitz with respect to ‖·‖1 for
all z ∈ Z. If we set

η =
D

L
min

{√
log(d)/n, ε/

√
d log d log 1

δ

}
,

then Algorithm 2 uses O(log n ·min(n3/2
√

log d, n2ε/
√
d)) gradients and its output has

E[F (xk)− F (x?)] = LD ·O

(√
log d√
n

+

√
d log3 d log 1

δ

nε

)
.
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We begin with the following lemma which bounds the distance of the private minimizer to the
true minimizer at each iteration.

Lemma 3.3. Let x̂i = argminx∈X Fi(x). Then ,

E[‖xi − x̂i‖2p] ≤ O
(
L2η2

i ni
log d

+ L2η2
i d log d log(1/δ)/ε2

i

)
.

Proof. First, we prove that x̂i ∈ Xi. The definition of x̂i implies that

1

ni

ni∑
j=1

f(x̂i; zj) +
1

ηini(p− 1)
‖x̂i − xi−1‖2p ≤

1

ni

ni∑
j=1

f(xi−1; zj).

Since f(x; z) is L-Lipschitz, we get

1

ηini(p− 1)
‖x̂i − xi−1‖2p ≤ L ‖x̂i − xi−1‖1 ≤ 2L ‖x̂i − xi−1‖p

where the last inequality follows from the choice of p (since ‖z‖1 ≤ d1−1/p ‖z‖p ≤ 2 ‖z‖p for all z ∈
Rd), hence we get ‖x̂i − xi−1‖p ≤

2Lηini
log d . Thus, we have that x̂i ∈ Xi = {x : ‖x− xi−1‖p ≤

2Lηini
log d }.

Now, note that the function Fi(x) is λi-strongly convex relative to hi(x) = 1
p−1 ‖x− xi−1‖2p

where λi = 1
ηini

. Moreover, the function ri(x) = 1
ηini(p−1) ‖x− xi−1‖2p is 4L-Lipschitz with respect

to ‖·‖1 for x ∈ Xi. Therefore using the bounds of Theorem 3 for noisy mirror descent and observing
that Fi(x) is λi-strongly convex with respect to ‖·‖p,

λi
2
E[‖xi − x̂i‖2p] ≤ E[Fi(xi)− Fi(x̂i)] ≤ O

(
L2

λini log d
+
L2d log d log2(1/δ)

n2
i ε

2
iλi

)
,

implying that E[‖xi − x̂i‖2p] ≤ O
(
L2η2i ni

log d +
L2η2i d log d log2(1/δ)

ε2i

)
.

The next lemma follows from Shalev-Shwartz et al. [SSSSS09].

Lemma 3.4. Let x̂i = argminx∈Xi Fi(x) and y ∈ X . If f(x; z) is L-Lipschitz with respect to ‖·‖1,

then E[F (x̂i)]− F (y) ≤ E[‖y−xi−1‖2p]

ηini(p−1) +O(L2ηi).

Proof. The proof follows from Theorems 6 and 7 in [SSSSS09] by noting that the function r(x; zj) =
f(x; zj) + 1

ηini(p−1) ‖x− xi−1‖2p is 1
ηini

-strongly convex and O(L)-Lipschitz with respect to ‖·‖1 over
Xi.

We are now ready to prove Theorem 4.

Proof. First, we prove the claim about runtime and number of queried gradients. Algorithm 1
requires n2

i /bi gradients (same runtime) hence since bi = max(
√
ni/ log d,

√
d/εi) we get that the

number of gradients at each stage is at most min(n3/2
√

log d, n2ε/
√
d), implying the claim as we

have log n iterates. Next, we prove utility which is similar to the proof of Theorem 4.4 in [FKT20].
Letting x̂0 = x?, we have:

E[F (xk)]− F (x?) =

k∑
i=1

E[F (x̂i)− F (x̂i−1)] + E[F (xk)− F (x̂k)].
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First, note that Lemma 3.3 implies

E[F (xk)− F (x̂k)] ≤ LE[‖xk − x̂k‖1]

≤ L
√

E[2 ‖xk − x̂k‖2p]

≤ CL2ηk(
√
ni/ log d+

√
d log d log(1/δ)/εk)

≤ C2−2kL2η(
√
n/ log d+

√
d log d log(1/δ)/ε) ≤ CLD/n2,

where the last inequality follows since η ≤ D
L min(

√
log(d)/n, ε/

√
d log d log(1/δ)). Lemmas 3.4

and 3.3 imply

k∑
i=1

E[F (x̂i)− F (x̂i−1)] ≤
k∑
i=1

E[‖x̂i−1 − xi−1‖2p]
ηini(p− 1)

+ CL2ηi

≤ D2

ηn(p− 1)
+

k∑
i=2

C(L2ηi +
L2ηid log d log(1/δ)

niε2
i (p− 1)

) + C

k∑
i=1

L2η

2i

≤ D2

ηn(p− 1)
+ CL2η + C

k∑
i=2

2−i
L2ηd log d log(1/δ)

nε2(p− 1)
+ 2CL2η

≤ D2

ηn(p− 1)
+ 2C

L2ηd log d log(1/δ)

nε2(p− 1)
+ 3CL2η.

The claim now follows by setting the value of η.

Finally, we can extend Algorithm 2 to work for general `p geometries for 1 < p ≤ 2, resulting
in the following theorem. We defer full details to Appendix B.

Theorem 5. Let 1 < p ≤ 2. Assume diamp(X ) ≤ D and f(x; z) is convex and L-Lipschitz
with respect to ‖·‖p for all z ∈ Z. Then there is an (ε, δ)-DP algorithm that uses O(log n ·
min(n3/2

√
log d, n2ε/

√
d)) and outputs x̂ such that

E[F (x̂)− F (x?)] = LD ·O

(
1√

(p− 1)n
+

√
d log d log 1

δ

(p− 1)nε

)
.

If p = 2 then the output x̂ has

E[F (x̂)− F (x?)] = LD ·O

(
1√
n

+

√
d log 1

δ

nε

)
.

4 Efficient Algorithms for Smooth Functions

Having established tight bounds for the non-smooth case, in this section we turn to the smooth
setting and develop linear-time private Frank-Wolfe algorithms with variance-reduction that achieve
the optimal rates. Specifically, our algorithms achieve the rate Õ(1/

√
nε) for pure ε-DP and

Õ
(
1/
√
n+ 1/(nε)2/3

)
for (ε, δ)-DP. These results imply that the optimal (non-private) statistical

rate Õ(1/
√
n) is achievable with strong privacy guarantees—whenever ε ≥ Ω̃(1/n1/4) for (ε, δ)-

DP—even for high dimensional functions with d� n.
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u000 u001

u01

u010 u011

u1

u10

u100 u101

u11

u110 u111

Figure 1. Binary tree at phase t = 3 of the algorithm. At the leaf u101, the algorithm has the
gradient estimate vt,101 which is calculated along the path to the root where every right son applies
a correction step to the estimate. Using the gradient estimate vt,101, the algorithm applies a Frank-
Wolfe step to calculate the next iterate and put its value in the next DFS vertex, namely ut,11.

The starting point of our algorithms is the recent non-private Frank-Wolfe algorithm of Yurt-
sever et al. [YSC19] which uses variance-reduction techniques to achieve the (non-private) optimal
rates. Due to the high reuse of samples, a direct approach to privatizing their algorithm would
results in sub-optimal bounds. To overcome this, we design a new binary-tree scheme for variance
reduction that allows for more noise-efficient private algorithms.

We describe our private Frank-Wolfe procedure in Algorithm 3. We present the algorithm in a
more general setting where X can be an arbitrary convex body with m vertices. The algorithm has
T phases (outer iterations) indexed by 1 ≤ t ≤ T and each phase t has a binary tree of depth t. We
will denote vertices by us where s ∈ {0, 1}≤t is the path to the vertex; i.e., u∅ will denote the root
of the tree, u01 will denote the right child of u0. Each vertex us is associated with a parameter xt,s,
a gradient estimate vt,s, and a set of samples St,s of size 2−jb where j is the depth of the vertex.
Roughly, the idea is to improve the gradient estimate at a vertex (reduce the variance) using the
gradient estimates at vertices along the path to the root; since these vertices have more samples,
this procedure can result in better gradient estimates.

More precisely, the algorithm traverses through the graph vertices according to the Depth-
First-Search (DFS) approach. At each vertex, the algorithm improves the gradient estimate at the
current vertex using the estimate at the parent vertex. When the algorithm visits a leaf vertex, it
also updates the current iterate using the Frank-Wolfe step with the gradient estimate at the leaf.

For notational convenience, we let DFS(t) denote the DFS order of the vertices in a binary tree
of depth t (root not included), i.e., for t = 2 we have DFS(t) = {u0, u00, u01, u1, u10, u11}. Moreover,
for s ∈ {0, 1}t we let `(s) denote the integer whose binary representation is s. In the description of
the algorithm, we denote iterates by xt,s where t is the phase and s ∈ {0, 1}t is the path from the
root. In our proofs, we sometimes use the equivalent notation xk where k = 2t−1 + `(s).

We analyze Algorithm 3 for pure and approximate DP.

4.1 Pure Differential Privacy

The following theorem summarizes our guarantees for pure privacy.

Theorem 6. Assume that diam1(X ) ≤ D, m ≤ O(d) and that f(x; z) is convex, L-Lipschitz and

β-smooth with respect to ‖·‖1. Assume also that L logm log2 n
nεD ≤ β ≤ nL logm

εD log2 n
. Setting b = n/ log2 n,

10



Algorithm 3 Private Variance Reduced Frank-Wolfe

Require: Dataset S = (z1, . . . , zn) ∈ Zn, constraint set X = conv{c1, . . . , cm}, number of phases
T , batch size b, initial point x0;

1: for t = 1 to T do
2: Set xt,∅ = xt−1,Lt−1

3: Draw b samples to the set St,∅
4: vt,∅ ← ∇f(xt,∅;St,∅)
5: for us ∈ DFS[2t] do
6: Let s = s′c where c ∈ {0, 1} and j = |s|
7: if c = 0 then
8: vt,s ← vt,s′ ; xt,s ← xt,s′

9: else
10: Draw 2−jb samples to the set St,s
11: vt,s ← vt,s′ +∇f(xt,s;St,s)−∇f(xt,s′ ;St,s)
12: if j = t then
13: Let s+ be the next vertex in the DFS iteration
14: wt,s ← argminci:1≤i≤m〈ci, vt,s〉+ ζi where ζi ∼ Laplace(λt,s)
15: xt,s+ ← (1− ηt,s)xt,s + ηt,swt,s where ηt,s = 2

2t−1+`(s)+1

16: return the final iterate xK

λt,s = 2LD2t

bε and T = 1
2 log

(
bεβD
L logm

)
, Algorithm 3 is ε-DP, queries n gradients, and has

E[F (xK)− F (x?)] ≤ O

(
D(L+ βD)

√
log d log n√

n
+

√
βLD3 log d log n√

nε

)
.

Moreover, if β ≤ L logm log2 n
nεD then setting T = 1 and b = n, Algorithm 3 is ε-DP, queries n

gradients, and has

E[F (xK)− F (x?)] ≤ DL ·O
(√

log d√
n

+
log d

nε

)
+O(βD2).

To prove the theorem, we begin with the following lemma that gives pure privacy guarantees.

Lemma 4.1. Assume 2T ≤ b. Setting λt,s = 2LD2t

bε , Algorithm 3 is ε-DP with ε ≤ 1. Moreover,

E[〈vt,s, wt,s〉] ≤ E[minw∈X 〈vt,s, w〉] +O(LD2t

bε logm).

Proof. The main idea for the privacy proof is that each sample in the set St,s is used in the calcu-
lation of vt,s at most Nt,s = 2t−|s| times, hence setting the noise large enough so that each iterate
is ε

Nt,s
-DP, we get that the final mechanism is ε-DP using basic composition. Let us now provide

a more formal argument. Let S = (z1, . . . , zn−1, zn),S ′ = (z1, . . . , zn−1, z
′
n) be two neighboring

datasets with iterates x = (x1, . . . , xK) and x′ = (x′1, . . . , x
′
K), respectively. We prove that x and

x′ are ε-indistinguishable, i.e., x ≈(ε,0) x
′. Let St,s be the set (vertex) that contains the last sample

(i.e., zn or z′n) and let j = |s| denote the depth of this vertex. We will prove privacy given that the
n’th sample is in St,s, which will imply our general privacy guarantee as this holds for every choice
of t and s.

Note that |St,s| = 2−jb and that this set is used in the calculation of vk for at most 2t−j

(consecutive) iterates, namely these are leafs that are descendants of the vertex ut,s. Let k0 and k1 be
the first and last iterate such that the set St,s is used for the calculation of vk, hence k1−k0+1 ≤ 2t−j .

11



The iterates (x1, . . . , xk0−1) and (x′1, . . . , x
′
k0−1) do not depend on the last sample and therefore

has the same distribution (hence 0-indistinguishable). Moreover, given that (xk0 , . . . , xk1) ≈(ε,0)

(x′k0 , . . . , x
′
k1

), it is clear that the remaining iterates (xk1+1, . . . , xK) ≈(ε,0) (x′k1+1, . . . , x
′
K) by post-

processing as they do depend on the last sample only through the previous iterates. It is therefore
enough to prove that (xk0 , . . . , xk1) ≈(ε,0) (x′k0 , . . . , x

′
k1

). To this end, we prove that for each
such iterate, wk ≈(ε/2t−j ,0) w

′
k, hence using post-processing and basic composition the iterates

are ε-indistinguishable as k1 − k0 + 1 ≤ 2t−j . Note that for every k0 ≤ k ≤ k1 the sensitivity
|〈ci, vk− v′k〉| ≤

DL
2−jb

. Hence, using privacy guarantees of report noisy max [[]claim 3.9]DworkRo14,

we have that wk ≈(ε/2t−j ,0) w
′
k since λt,s = 2LD2t

bε .
Now we prove the second part of the claim. Standard results for the expectation of the maxi-

mum of m Laplace random variables imply that E[〈vt,s, wt,s〉] ≤ min1≤i≤m〈vt,s, ci〉+O(LD2t

bε logm).
Since X = conv{c1, . . . , cm}, we know that for any v ∈ Rd, argminw∈X 〈w, v〉 ∩ {c1, . . . , cm} 6=
∅ [TTZ15](Fact 2.3) which proves the claim.

The next lemma upper bounds the variance of the gradients.

Lemma 4.2. At the vertex (t, s), we have

E ‖vt,s −∇F (xt,s)‖∞ ≤ (L+ βD) ·O
(√

log(d)/b
)
.

The claim follows directly from the following lemma.

Lemma 4.3. Let (s, t) be a vertex and σ2 = (L2 + β2D2)/b. For every index 1 ≤ i ≤ d,

E
[
eλ(vt,s,i−∇Fi(xt,s))

]
≤ eO(1)λ2σ2

.

Proof. (Lemma 4.2) Lemma 4.3 says that vt,s,i − ∇Fi(xt,s) is O(σ2)-sub-Gaussian for every 1 ≤
i ≤ d, hence standard results imply that the maximum of d sub-Gaussian random variables is
E ‖vt,s −∇F (xt,s)‖∞ ≤ O(σ)

√
log d. The claim follows.

Proof. (Lemma 4.3) Let us fix i for simplicity and let Bt,s = vt,s,i −∇Fi(xt,s). We prove the claim
by induction on the depth of the vertex, i.e., j = |s|. If j = 0 then s = ∅ which implies that
vt,∅ = ∇f(xt,∅;St,∅) where St,∅ is a sample of size b. Thus we have

E[eλBt,∅ ] = E
[
eλ(vt,∅,i−∇Fi(xt,∅)

]
= E

[
e
λ( 1
b

∑
s∈St,∅

∇fi(xt,∅;s)−∇Fi(xt,∅)
]

=
∏
s∈St,∅

E[e
λ
b

(∇fi(xt,∅;s)−∇Fi(xt,∅))]

≤ eλ2L2/2b,

where the last inequality follows since for a random variable X ∈ [−L,L] and E[X] = 0, we
have E[eλX ] ≤ eλ

2L2/2 ([Duc19], example 3.6). Assume now we have s with |s| = j > 0 and
let s = s′c where c ∈ {0, 1}. If c = 0 the claim clearly holds so we assume c = 1. Recall
that in this case vt,s = vt,s′ + ∇f(xt,s;St,s) − ∇f(xt,s′ ;St,s), hence Bt,s = vt,s,i − ∇Fi(xt,s) =
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Bt,s′ +∇fi(xt,s;St,s)−∇fi(xt,s′ ;St,s)−∇Fi(xt,s) +∇Fi(xt,s′) Letting S<t,s = ∪(t1,s1)<(t,s)St1,s1 be
the set of all samples used up to vertex t, s, the law of iterated expectation implies

E[eλBt,s ] = E[eλ(Bt,s′+∇fi(xt,s;St,s)−∇fi(xt,s′ ;St,s)−∇Fi(xt,s)+∇Fi(xt,s′ ))]

= E
[
E[eλ(Bt,s′+∇fi(xt,s;St,s)−∇fi(xt,s′ ;St,s)−∇Fi(xt,s)+∇Fi(xt,s′ ))] | S<(t,s)

]
= E

[
E[eλBt,s′ | S<(t,s)] · E[eλ(∇fi(xt,s;St,s)−∇fi(xt,s′ ;St,s)−∇Fi(xt,s)+∇Fi(xt,s′ )) | S<t,s]

]
= E[eλBt,s′ ] · E[eλ(∇fi(xt,s;St,s)−∇fi(xt,s′ ;St,s)−∇Fi(xt,s)+∇Fi(xt,s′ )) | S<t,s].

Since f(·; s) is β-smooth with respect to ‖·‖1, we have that |∇fi(xt,s;St,s) − ∇fi(xt,s′ ;St,s)| ≤
β
∥∥xt,s − xt,s′∥∥1

. Moreover, as ut,s is the right son of ut,s′ , the number of updates between xt,s and
xt,s′ is at most the number of leafs visited between these two vertices which is 2t−j . Hence we get
that ∥∥xt,s − xt,s′∥∥1

≤ Dηt,s′2t−j ≤ D2−j+2,

which implies that |∇fi(xt,s;St,s)−∇fi(xt,s′ ;St,s)| ≤ βD2−j+2. Since E[∇fi(xt,s;St,s)−∇fi(xt,s′ ;St,s) |
S<t,s] = ∇Fi(xt,s)−∇Fi(xt,s′), by repeating similar arguments to the case ` = 0, we get that

E[eλ(∇fi(xt,s;St,s)−∇fi(xt,s′ ;St,s)−∇Fi(xt,s)+∇Fi(xt,s′ )) | S<t,s] ≤ eO(1)λ2β2D22−2j/|St,s|

≤ eO(1)λ2β2D22−j/b.

Overall we have that E[eλBt,s ] ≤ E[eλBt,s′ ] · eO(1)λ2β2D22−j/b. Applying this inductively, we get that
for every (t, s)

E[eλBt,s ] ≤ eO(1)λ2(L2+β2D2)/b.

Using the previous two lemmas, we can prove Theorem 6.

Proof. The setting of the parameters and the condition on β ensures that 2T ≤ b hence Lemma 4.1
implies the claim about privacy. Now we proceed to prove utility. In this proof, we use the
equivalent representation k = 2t−1 + `(s) for a leaf vertex (t, s) where `(s) is the number whose
binary representation is s. By smoothness we get,

F (xk+1) ≤ F (xk) + 〈∇F (xk), xk+1 − xk〉+ β ‖xk+1 − xk‖21 /2
≤ F (xk) + ηk〈∇F (xk), wk − xk〉+ βη2

kD
2/2

= F (xk) + ηk〈∇F (xk), x
? − xk〉+ ηk〈vk, wk − x?〉

+ ηk〈∇F (xk)− vk, wk − x?〉+ βη2
kD

2/2

≤ F (xk) + ηk(F (x?)− F (xk)) + ηkD ‖∇F (xk)− vk‖∞
+ ηk(〈vk, wk〉 − min

w∈X
〈vk, w〉) + βη2

kD
2/2.

Subtracting F (x?) from each side, using Lemmas 4.1 and 4.2 and taking expectations, we have

E[F (xk+1)− F (x?)] ≤ (1− ηk)E[F (xk)− F (x?)] + ηkD(L+ βD)

√
log d

b

+
η2
k

2
βD2 + ηkDL

2t logm

bε
.
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1

...
u1 u2 . . . up

...
u1,s

. . . u1,f up,s . . . up,s up,s . . . up,s

Figure 2. We view Algorithm 3 as a sequence of algorithms A1, . . . ,Ap, each Ai operating on the
subtree of the vertex ui using the outputs of the previous algorithms. The gray set denotes the
subtree over which A2 operates; its outputs are the iterates corresponding to the leafs of this subtree.
If each Ai is (ε0, δ0)-DP, then shuffling the samples at nodes of depth j (in blue) amplifies the privacy

to roughly (ε0
√

log(1/δ)/2j , δ + nδ0)-DP.

Letting αk = ηkD(L+ βD)
√

log d
b +

η2k
2 βD

2 + ηkDL
2t logm
bε , we have

E[F (xK)− F (x?)] ≤
K∑
k=1

αk
∏
i>k

(1− ηi)

=
K∑
k=1

αk
(k − 1)k

K(K + 1)
≤

K∑
k=1

αk
k2

K2
.

Since t ≤ T and K = 2T , simple algebra now yields

E[F (xK)− F (x?)] ≤ O
(
D(L+ βD)

√
log d√
b

+
βD2

2T
+DL

2T logm

bε

)
.

The number of samples in the algorithm is upper bounded by T 2 ·b hence the first part of the claim

follows by setting b = n/ log2 n and T = 1
2 log

(
bεβD
L logm

)
. The condition on β ensures that the term

inside the log is greater than 1. The second part follows similarly using T = 1 and b = n.

4.2 Approximate Differential Privacy

The previous section achieves the optimal non-private rate 1/
√
n only for ε = Θ(1). In this

section we show that for approximate differential privacy, it is possible to achieve the optimal
rates when ε ≥ Ω(n−1/4). The first approach to improve the privacy analysis here is to use
advanced composition for approximate DP. Unfortunately, it is not enough by itself and we use
amplification by shuffling results to achieve the optimal bounds. The following theorem summarizes
the guarantees of Algorithm 3 for approximate privacy.

Theorem 7. Let δ ≤ 1/n and assume that diam1(X ) ≤ D, m ≤ O(d) and that f(x; z) is convex, L-

Lipschitz and β-smooth with respect to ‖·‖1. Assume L log(n/δ) logm log2 n
nεD ≤ β ≤

√
nL log(n/δ) logm

εD logn and

ε ≤ (L log(n/δ) logm)1/4
√

logn

(nβD)1/4
. Let λt,s = LD2T/2 log(n/δ)

bε , b = n/ log2 n, and T = 2
3 log

(
bεβD

L log(n/δ) logm

)
,

then Algorithm 3 is (ε, δ)-DP, queries n gradients, and has

E[F (xK)−F (x?)] ≤ O
(
D(L+ βD)

√
log d log n√

n

)
+O

(√
βLD2 log(1/δ) logm log2 n

nε

)2/3

.
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The following lemma proves privacy in this setting.

Lemma 4.4. Let 2T ≤ b, δ ≤ 1/n and ε ≤
√

2−T log(1/δ). Setting λt,s = LD2T/2 log(n/δ)
bε , Algo-

rithm 3 is (O(ε), 21δ)-DP. Moreover, E[〈vt,s, wt,s〉] ≤ E[minw∈X 〈vt,s, w〉]+O(LD2T/2 log(n/δ)log(m)/bε).

To prove Lemma 4.4, we use the following privacy amplification by shuffling.

Lemma 4.5 ([FMT20], Theorem 3.8). Let Ai : T i−1 × Z → T for i ∈ [n] be a sequence of
algorithm such that Ai(w1:i−1, ·) is (ε0, δ0)-DP for all values of w1:i−1 ∈ T i−1 with ε0 ≤ O(1). Let
AS : Zn → T n be an algorithm that given z1:n ∈ Zn, first samples a random permutation π, then
sequentially computes wi = Ai(w1:i−1, zπ(i)) for i ∈ [n] and outputs w1:n. Then for any δ such that

ε0 ≤ log( n
16 log(2/δ)), the algorithm As is (ε, δ + 20nδ0) where ε ≤ O(ε0

√
log(1/δ)/n).

Proof. We use the same notation as Lemma 4.1 where S = (z1, . . . , zn−1, zn),S ′ = (z1, . . . , zn−1, z
′
n)

denote two neighboring datasets with iterates x = (x1, . . . , xK) and x′ = (x′1, . . . , x
′
K). Here, we

prove privacy after conditioning on the event that the n’th sample is sampled at phase t and depth
j. We need to show that the iterates are (ε, δ)-indistinguishable. We only need to prove privacy
for the iterates at phase t as the iterates before phase t do not depend on the n’th sample and the
iterates after phase t are (ε, δ)-indistinguishable by post-processing.

Let us now focus on the iterates at phase t. Let u1, . . . , up denote the vertices at level j that
has samples S1, . . . , Sp each of size |Si| = 2−jb. We will have two steps in the proof. First, we use
advanced composition to show that the iterates that are descendant of a vertex ui are (ε0, δ0)-DP
where roughly ε0 = 2j/2ε. As we have p = 2j vertices at depth j, we then use the amplification by
shuffling result to argue that the final privacy guarantee is (ε, δ)-DP (see Fig. 2 for a demonstration
of the shuffling in our algorithm).

Let Ai be the algorithm that outputs the iterates corresponding to the leafs that are descendants
of ui; we denote this output by Oi. Note that the inputs of Ai are the samples at ui, which
we denote as Si, and the previous outputs O1, . . . , Oi−1. In this notation, we have that Oi =
Ai(O1, . . . , Oi−1, Si). We let Ai, Si and Oi denote the above quantities when the input dataset is
Si and similarly A′i, S′i and O′i for S ′. To prove privacy, we need to show that (O1, . . . , Op) ≈(ε,δ)

(O′1, . . . , O
′
p), that is (O1, . . . , Op) and (O′1, . . . , O

′
p) are (ε, δ)-indistinguishable

To this end, we first describe an equivalent sampling procedure for the sets S1, . . . , Sp. Given
r samples, the algorithm basically constructs the sets S1, . . . , Sp by sampling uniformly at random
p sets of size r/p without repetition. Instead, we consider the following sampling procedure. First,
we randomly choose a set of size p(r− 1) samples that does not include the n’th sample and using
this set we randomly choose r/p − 1 samples for each set Si. Then, we shuffle the remaining p
samples and add each sample to the corresponding set. It is clear that this sampling procedure
is equivalent. We prove privacy conditional on the output of the first stage of the randomization
procedure which will imply privacy unconditionally.

Assuming without loss of generality that the samples which remained in the second stage are
zn−p+1, . . . , zn, and letting π : [p] → {n − p + 1, . . . , n} denote the random permutation of the
second stage, the algorithms Ai and A′i can be written as a function of the previous outputs and
the sample zπ(i). This is true since the S and S ′ differ in one sample and therefore the first r/p− 1
samples in the sets Si and S′i are identical. Thus, we can write Oi = Ai(O1, . . . , Oi−1, zπ(i)).

Using the above notation, we are now ready to prove privacy. First, we show privacy for each
i using advanced composition. Similarly to Lemma 4.1, as each iterate k which is a leaf of ui has
sensitivity |〈ci, vk − v′k〉| ≤

DL
2−jb

, we have that xk and x′k are ε
2T/2−j log(n/δ)

-indistinguishable since

λt,s = LD2T/2 log(n/δ)
bε . Since there are 2t−j leafs of ui, advanced composition (Lemma 2.2) implies

that Oi ≈(ε0,δ0) O
′
i where ε0 = ε

2T/2−j log(n/δ)

√
2t−j log(1/δ0) ≤ O(ε)√

log(1/δ)2−j/2
by setting δ0 = δ/n.
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Finally, we can use the amplification by shuffling result to finish the proof. First, note that we
need ε0 ≤ log( 2j

16 log(2/δ)) to be able to use Lemma 4.5. If 2j ≤ O(log(1/δ)) then we do not need the

amplification by shuffling result as ε0 ≤ O(ε2j/2/
√

log(1/δ)) ≤ O(ε). Otherwise 2j is large enough
so that we can use Lemma 4.5. Since each Ai and A′i are (ε0, δ0)-DP and since the second stage
shuffles the inputs to each algorithm, Lemma 4.5 now implies that the outputs of the algorithms

Ai and A′i are (εf , δ + 20nδ0)-DP where εf ≤
ε0
√

log(1/δ)

2j/2
≤ O(ε) which proves the claim.

Theorem 7 now follows using similar arguments to the proof of Theorem 6.

Proof. The assumptions on β ensure that 2T ≤ b and the assumptions on ε ensure ε ≤ 2−T/2 log(n/δ)
hence the privacy follows from Lemma 4.4. The utility analysis is similar to the proof of Theorem 6.
Repeating the same arguments in the proof of Theorem 6 while using the new value of λt,s, we get

E[F (xK)− F (x?)] ≤ O

(
D(L+ βD)

√
log d√
b

+
βD2

2T
+DL

2T/2 log(n/δ) logm

bε

)
.

As the number of samples is upper bounded by T 2 · b, we set T = 2
3 log

(
bεβD

L log(n/δ) logm

)
and

b = n/ log2 n to get the first part of the theorem. Note that the condition on β ensure the term
inside the log is greater than 1.

5 Implications for Strongly Convex Functions

When the function is strongly convex, we use standard reductions to the convex case to achieve
better rates [FKT20]. Given a private algorithm A for the convex case, we use the following
algorithm for the strongly convex case (see [FKT20]): run A for k = dlog logne iterates, each
initialized at the output of the previous iterates and run for ni = 2i−2n/ log n. Using this reduction
with our algorithms for convex functions, we have the following theorems for non-smooth and
smooth functions.

Theorem 8. Assume diam1(X ) ≤ D and f(x; z) is convex, L-Lipschitz, and λ-strongly convex
with respect to ‖·‖1 for all z ∈ Z. Then using Algorithm 2 in the above algorithm results in an
algorithm that uses O(log n log log n ·min(n3/2

√
log d, n2ε/

√
d)) gradients and outputs x̂ such that

E[F (x̂)− F (x?)] = LD ·O

(
log d

n
+
d log3 d log 1

δ

n2ε2

)
.

Theorem 9. Let δ ≤ 1/n and assume that diam1(X ) ≤ D, m ≤ O(d) and that f(x; z) is convex,
L-Lipschitz, λ-strongly convex and β-smooth with respect to ‖·‖1 where β = O(L/D). Then us-
ing Algorithm 3 in the above algorithm results in an algorithm that uses O(n) gradients and outputs
x̂ such that

E[F (x̂)−F (x?)] ≤ LD ·O
(

log d log2 n

n

)
+ LD ·O

(
log(1/δ) logm log2 n

nε

)4/3

.

The proof follows directly from the proof of Theorem 5.1 in [FKT20], together with the bounds
of Section 3 and Section 4.
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6 Lower Bounds

We conclude the paper with tight lower bounds. Our lower bounds are for the excess empirical loss
but these can be translated to lower bounds for excess population loss using a simple bootstrapping
approach [BFTT19].

6.1 Lower Bounds for Non-Smooth Functions

In this section, we prove tight lower bounds for non-smooth functions using bounds for estimating
the sign of the mean. In this problem, given a dataset S = (z1, . . . , zn) with mean z̄, we aim to
design private algorithms that estimate sign(z̄). The following lemma provides a lower bound for
this problem. We defer the proof to Appendix D.1.

Lemma 6.1. Let S = (z1, . . . , zn) where zi ∈ Z = {−D/d,D/d}d and let z̄ = 1
n

∑n
i=1 zi. Then

any (ε, δ)-DP algorithm A : Z → {−1,+1}d has

max
S∈Zn

E

 d∑
j=1

|z̄j |1{A(S)j 6= sign(z̄j)}

 ≥ Ω

(
D
√
d

nε log d

)
.

The previous lemma implies our desired lower bound.

Theorem 10. Let f(x; zi) = L ‖x− zi‖1 where zi ∈ Z = {−D/d,D/d}d, F̂ (x;S) = 1
n

∑n
i=1 ‖x− zi‖1,

and X = {x : ‖x‖1 ≤ D}. Then any (ε, δ)-DP algorithm A has

max
S∈Zn

E
[
F̂ (A(S);S)−min

x∈X
F̂ (x;S)

]
≥ Ω

(
LD
√
d

nε log d

)
.

Proof. First, note that f(x; zi) is L-Lipschitz with respect to ‖·‖1. Moreover, it is immediate to

see that the minimizer of F̂ (·;S) is x? = sign(z̄)D/d where z̄ = 1
n

∑n
i=1 zi is the mean. Letting

x̂ = A(S), simple algebra yields

F̂ (x̂;S)− F̂ (x?;S) ≥ L
d∑
j=1

|z̄j |1{sign(x̂j) 6= sign(z̄j)} .

The claim now follows from Lemma 6.1 as sign(A(S)) is differentially private by post-processing.

6.2 Lower Bounds for Smooth Functions

In this section we prove tight lower bounds for smooth function. Specifically, we focus on β-smooth
functions with β ≈ L/D; such an assumption holds for many applications including LASSO (linear
regression). Our results in this section build on the lower bounds of Talwar et al. [TTZ15] which
show tight bounds for private Lasso for sufficiently large dimension. We have the following lower
bound for smooth functions which we prove in Appendix D.2.

Theorem 11. Let X = {x ∈ Rd : ‖x‖1 ≤ D}. There is family of convex functions f : X × Z → R
that is L-Lipschitz and β-smooth with β ≤ L/D such that any (ε, δ)-DP algorithm A with δ = n−ω(1)

has

sup
S∈Zn

E
[
F̂ (A(S);S)−min

x∈X
F̂ (x;S)

]
≥ LD · Ω̃

(
min

(
1

(nε)2/3
,

√
d

nε

))
.
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The lower bound of Theorem 11 implies the optimality of our upper bounds; if d ≥ Õ((nε)2/3)
then the lower bound is essentially 1/(nε)2/3 which is achieved by the private Frank-Wolfe algorithm
of Section 4, otherwise d ≤ Õ((nε)2/3) and the lower bound is

√
d/nε which is the same bound that

private mirror descent (Section 3) obtains.
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A Non-Contractivity of Mirror Descent

In this section, we provide counter examples that show that Mirror Descent is not a contraction in
general. To this end, we consider the standard mirror descent algorithm with KL-regularization over
the simplex ∆d−1 = {x ∈ Rd+ : ‖x‖1 = 1}, that is, the following update with h(x) =

∑d
j=1 xj log xj ,

xk+1 = argmin
x∈∆

{
〈∇f(xk), x〉+

1

ηk
Dh(x, xk)

}
,

which yields the update

xk+1 =
xk · e−η∇f(xk)∥∥xk · e−η∇f(xk)

∥∥
1

. (1)

We let xk+1 = MDη,f (xk) denote the above mirror descent update. The following lemma shows
that mirror descent is not contractive even for linear functions.

Lemma A.1. There exists a linear function f : ∆2 → R such that for every 0 < η ≤ 1, there are
x0, y0 ∈ ∆2 such that the mirror descent update x1 = MDη,f (x0) and y1 = MDη,f (y0) have

‖x1 − y1‖1 ≥ (1 + η/4) ‖x0 − y0‖1 , Dh(x1, y1) ≥ (1 + η/4)Dh(x0, y0).

Proof. We consider a linear function f(x1, x2, x3) = −x2 − x3, and two starting iterates for n > 0
to be chosen presently

x0 =

(
1− 3

n
,

1

n
,

2

n

)
, y0 =

(
1− 3

n
,

2

n
,

1

n

)
.

First, notice that for this setting of parameters, we have that:

‖x0 − y0‖1 =
2

n
, Dh(x0, y0) = Dkl(x0, y0) =

log 2

n
.

Using mirror descent update (1), we have

x1 =
1

c
(x0,1, x0,2 e

η, x0,3 e
η) , y1 =

1

c
(y0,1, y0,2 e

η, y0,3 e
η) ,

where c = 1 + 3
n(eη − 1). Setting n ≥ 100(eη − 1)/η, we get that c ≤ 1 + η/20. Since x0,1 = y0,1,

we get that

‖x1 − y1‖1 =
eη

c
‖x0 − y0‖1

≥ 1 + η

1 + η/20
‖x0 − y0‖1

≥ ‖x0 − y0‖1 +
η

4
‖x0 − y0‖1 .

Moreover, for KL-divergence we have

Dkl(x1, y1) =
eη

c
Dkl(x0, y0)

≥ (1 + η/4)Dkl(x0, y0).
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Although Lemma A.1 says that mirror descent update is not contractive even for linear func-
tions, it does not preclude the possibility that mirror descent is stable. Indeed, the following lemma
shows that mirror descent enjoys similar stability guarantees to SGD for linear functions. Extending
this stability result to general convex functions is an interesting open question.

Lemma A.2. Let S = (z1, . . . , zn) and S ′ = (z′1, . . . , zn) be neighboring datasets where xi ∈ Rd
and ‖zi‖∞ ≤ L. Consider the functions f(x; z) = 〈z, x〉. Let {xk}Tk=0 be the iterates of Algorithm 4
on S with x0 = 1

d · 1 for R rounds and η > 0. Similarly, Let {yk}Tk=0 be the iterates of Algorithm 4
on S ′ with y0 = 1

d · 1 for R rounds and η > 0. Then after R rounds (T = Rn iterates),

‖xT − yT ‖21 ≤ Dkl(xT , yT ) +Dkl(yT , xT ) ≤ 4η2L2R2.

Proof. First, note that

log
xk
yk

= η
k−1∑
i=1

(g′i − gi) + C,

where C is a constant vector, gi and g′i are the (sub)-gradients for S and S ′, respectively. Thus we
have that

Dkl(xT , yT ) +Dkl(yT , xT ) = 〈xk − yk, log
xk
yk
〉

= η〈xk − yk,
k−1∑
i=1

(g′i − gi)〉

≤ η
√
Dkl(xT , yT ) +Dkl(yT , xT )

k−1∑
i=1

∥∥g′i − gi∥∥∞
≤ 2ηLR

√
Dkl(xT , yT ) +Dkl(yT , xT ) ,

where the first inequality follows from holder’s inequality and the strong convexity of KL-divergence
with respect to ‖·‖1 (this is Pinsker’s inequality; see e.g., [Duc19]) and the second inequality follows
since the first sample z1 (or z′1) appears R times. The claim follows.

Algorithm 4 Stochastic Mirror Descent

Require: Dataset S = (z1, . . . , zn) ∈ Zn, step sizes η, initial point x0, number of rounds R;
1: k ← 0
2: for r = 1 to R do
3: Sample a random permutation π : [n]→ [n]
4: for i = 1 to n do
5: Set gk = ∇f(xk; zπ(i))

6: Find xk+1 := argminx∈∆d−1
{〈gk, x− xk〉+ 1

ηDh(x, xk)} where h(x) =
∑d

j=1 xj log xj
7: k ← k + 1
8: return x̄T = 1

T

∑T
k=1 xk

B Rates for General `p-Geometry

In this section, we extend our algorithms to work for general `p-geometries for p > 1. Here, the
optimization is over the domain X = {x ∈ Rd : ‖x‖p ≤ 1} and we consider functions f : X → R
that are L-Lipschitz with respect to ‖·‖p, that is, ‖g‖q ≤ L for all x and sub-gradient g ∈ ∂f(x)
where 1/p+ 1/q = 1.
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B.1 Algorithms for ERM for 1 ≤ p ≤ 2

To extend Algorithm 1 to work for general geometries, we need to bound the sensitivity of the
gradients. Consider 1 ≤ p ≤ 2 then q > 2 which implies that ‖g‖2 ≤ d1/2−1/q ‖g‖q, that is, the

function is d1/2−1/qL with respect to ‖·‖2.

Algorithm 5 Noisy Mirror Descent for General Geometries

Require: Dataset S = (z1, . . . , zn) ∈ Zn, 1 < p and convex set X = {x ∈ Rd : ‖x‖p ≤ 1}, convex

function h : X → R, step sizes {ηk}Tk=1, batch size b, initial point x0, number of iterations T ;
1: Find q ≥ 1 such that 1/q + 1/p = 1
2: for k = 1 to T do
3: Sample S1, . . . , Sb ∼ Unif(S)
4: Set ĝk = 1

b

∑b
i=1∇f(xk;Si) + ζi where ζi ∼ N(0, σ2Id) with σ = 100L

√
d1−2/q log(1/δ)/bε

5: Find xk+1 := argminx∈X {〈ĝk, x− xk〉+ 1
ηk
Dh(x, xk)}

6: return x̄T = 1
T

∑T
k=1 xk (convex)

7: return x̂T = 2
T (T+1)

∑T
k=1 kxk (strongly convex)

Theorem 12. Let 1 < p ≤ 2, h : X → R be 1-strongly convex with respect to ‖·‖p, x? =

argminx∈X F̂ (x;S), and assume Dh(x?, x0) ≤ D2. Let f(x; z) be convex and L-Lipschitz with

respect to ‖·‖p for all z ∈ Z. Setting 1 ≤ b, T = n2

b2
and ηk = D√

T
1√

L2+4d2/qσ2 log d
, Algorithm 5 is

(ε, δ)-DP and

E[F̂ (x̄T ;S)− F̂ (x?;S)] ≤ LD ·O

(
b

n
+

√
d log 1

δ (1 + log d · 1{p < 2})
nε

)
.

Moreover, if f(x; z) is λ-strongly convex relative to h(x), then setting ηk = 2
λ(k+1)

E[F̂ (x̂T ;S)− F̂ (x?;S)] ≤ O

(
L2b2

λn2
+
L2d log 1

δ (1 + log d · 1{p < 2})
λn2ε2

)
.

Proof. Following the proof of Theorem 3, privacy follows from similar arguments, and for utility
we need to upper bound E[‖g̃k‖q]. Note that for p = q = 2 we have E[‖g̃k‖2q ] ≤ d. Otherwise we
have

E[‖g̃k‖2q ] ≤ 2L2 + 2E[‖ζk‖2q ] ≤ 2L2 + 2d2/qE[‖ζk‖2∞] ≤ 2L2 + 2d2/qE[‖ζk‖2∞] ≤ 2L2 + 8d2/qσ2 log d.

Now we complete the proof for p < 2. The same proof works for p = 2. The previous bound implies

E[F̂ (x̄T ;S)− F̂ (x?;S)] ≤ D2

Tη
+ ηL2 + 4ηd2/qσ2 log d

≤ 2D
√

(L2 + 4d2/qσ2 log d)/T

≤ LD ·O

 b

n
+

√
d log d log 1

δ

nε

 ,
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where the second inequality follows from the choice of η. For the second part, Lemma 3.2 implies
that

E[F̂ (x̂T ;S)− F̂ (x?;S)] ≤ L2

λ
O

(
b2

n2
+
d log d log 1

δ

n2ε2

)
.

B.2 Algorithms for SCO

We extend Algorithm 2 to work for general `p-geometries by using the general noisy mirror descent
(Algorithm 5) to solve the optimization problem at each phase. The following theorem proves our
main result for `p-geometry, that is, Theorem 5.

Theorem 13. Let 1 < p ≤ 2. Assume diamp(X ) ≤ D and f(x; z) is convex and L-Lipschitz with
respect to ‖·‖p for all z ∈ Z. If we set

η =
D

L
min

{
1/
√

(p− 1)n, ε/
√
d log 1

δ (1 + log d · 1{p < 2})
}
,

then Algorithm 6 requires O(log n ·min(n3/2
√

log d, n2ε/
√
d)) gradients and its output has

E[F (xk)− F (x?)] = LD ·O

(
1√

(p− 1)n
+

√
d log 1

δ (1 + log d · 1{p < 2})
(p− 1)nε

)
.

Proof. The proof follows from identical argument to the proof of Theorem 4 using the fact that
hi(x) = 1

2(p−1) ‖x− xi−1‖2p is 1-strongly convex with respect to ‖·‖p.

Algorithm 6 Localized Noisy Mirror Descent

Require: Dataset S = (z1, . . . , zn) ∈ Zn, 1 ≤ p, constraint set X , step size η, initial point x0;
1: Set k = dlog ne
2: for i = 1 to k do
3: Set εi = 2−iε, ni = 2−in, ηi = 2−4iη
4: Apply Algorithm 5 with (εi, δ)-DP, batch size bi = max(

√
ni/ log d,

√
d/εi), T = n2

i /b
2
i

and hi(x) = 1
2(p−1) ‖x− xi−1‖2p for solving the ERM over Xi = {x ∈ X : ‖x− xi−1‖p ≤

2Lηini(p− 1)}:

Fi(x) =
1

ni

ni∑
j=1

f(x; zj) +
1

ηini(p− 1)
‖x− xi−1‖2p

5: Let xi be the output of the private algorithm
6: return the final iterate xk

C Proofs of Section 3

C.1 Proof of Lemma 3.2

Proof. First, by strong convexity we have

f(xk)− f(x?) ≤ 〈∇f(xk), xk − x?〉 − λDh(x?, xk)

= 〈gk, xk − x?〉+ 〈∇f(xk)− gk, xk − x?〉 − λDh(x?, xk). (2)
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Let us now focus on the term 〈gk, xk − x?〉. The definition of xk+1 implies that for all y ∈ X

〈gk +
1

ηk
(∇h(xk+1)−∇h(xk)), y − xk+1〉 ≥ 0.

Substituting y = x?, we have

〈gk, xk − x?〉 = 〈gk, xk − xk+1〉+ 〈gk, xk+1 − x?〉

≤ 〈gk, xk − xk+1〉+
1

ηk
〈∇h(xk+1)−∇h(xk), x

? − xk+1〉

(i)
= 〈gk, xk − xk+1〉+

1

ηk
(Dh(x?, xk)−Dh(x?, xk+1)−Dh(xk+1, xk))

(ii)

≤ ηk
2
‖gk‖2∞ +

1

2ηk
‖xk − xk+1‖21 +

1

ηk
(Dh(x?, xk)−Dh(x?, xk+1)−Dh(xk+1, xk))

(iii)

≤ ηk
2
‖gk‖2∞ +

1

ηk
(Dh(x?, xk)−Dh(x?, xk+1)) ,

where (i) follows from the definition of bregman divergence, (ii) follows from Fenchel-Young in-
equality, and (iii) follows since h(x) is 1-strongly convex with respect to ‖·‖1. Substituting into (2),

f(xk)− f(x?) ≤ ηk
2
‖gk‖2∞ + 〈∇f(xk)− gk, xk − x?〉+

1

ηk
(Dh(x?, xk)−Dh(x?, xk+1))− λDh(x?, xk).

Multiplying by k and summing from k = 1 to T , we get

T∑
k=1

k(f(xk)− f(x?)) ≤ 1

2λ

T∑
k=1

‖gk‖2∞ + 〈∇f(xk)− gk, xk − x?〉

+
λ

2
(k(k − 1)Dh(x?, xk)− k(k + 1)Dh(x?, xk+1))

≤ 1

2λ

T∑
k=1

‖gk‖2∞ + 〈∇f(xk)− gk, xk − x?〉.

The claim now follows by taking expectations and using Jensen’s inequality.

D Proofs for Section 6

D.1 Proofs for Lemma 6.1

Without loss of generality, we assume that D = 1. Moreover, similarly to the proof of Theorem 11,
we prove lower bounds on the sample complexity to achieve a certain error which will imply our
lower bound on the utility. For an algorithm A and data S ∈ Zn, define the error of A:

Err(A,S) = E

 d∑
j=1

|z̄j |1{sign(A(S)j) 6= sign(z̄j)}

 .
The error of a A for datasets of size n is Err(A, n) = supS∈Zn Err(A,S).

We let n?(α, ε) denote the minimal n such that there is an (ε, δ)-DP (with δ = n−ω(1)) Aansim
A such that Err(A, n?(α, ε)) ≤ α. We prove the following lower bound on the sample complexity
which implies Lemma 6.1.
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Proposition 1. Let zi ∈ {−1/d, 1/d}d, α ≤ 1, and ε ≤ 1. Then

n?(α, ε) ≥ Ω(1) ·
√
d

αε log d
.

The proof follows directly from the following two lemmas.

Lemma D.1 ( Talwar et al. [TTZ15], Theorem 3.2). Let the assumptions of Proposition 1 hold.
Then

n?(α = 1/4, ε = 0.1) ≥ Ω(1) ·
√
d

log d
.

The following lemma shows how to extend the above lower bound to arbitrary accuracy and
privacy parameters.

Lemma D.2. Let ε0 ≤ 0.1. For α ≤ α0/2 and ε ≤ ε0/2,

n?(α, ε) ≥ α0ε0

αε
n?(α0, ε0).

Proof. The proof follows the same arguments as in the proof of Lemma D.5.

D.2 Proof of Theorem 11

In this section, we prove Theorem 11. We begin by recalling the lower bound of Talwar et al.
[TTZ15] and showing how it implies Lemma D.3.

Talwar et al. [TTZ15] consider the family of quadratic functions where f(x; ai, bi) = (aTi x− bi)2

where ai ∈ Rd and bi ∈ R. We assume X = {x : ‖x‖1 ≤ D}, ‖ai‖∞ ≤ C, and |bi| ≤ CD. Note
that the function f is L-Lipschitz and β-smooth with L ≤ O(C2D) and β ≤ O(C2) and there is
a choice of ai, bi that attains these. Theorem 3.1 in [TTZ15] gives a lower bound of 1/n2/3 when
C = 1, D = 1, and d ≥ Ω̃(n2/3). For general values of C and D, noticing that the function value is
multiplied by C2D2, the following lower bound follows as LD = C2D2.

Lemma D.3. Let X = {x ∈ Rd : ‖x‖1 ≤ D} and d ≥ Ω̃(n2/3). There is family of convex functions
f : X ×Z → R that is L-Lipschitz and β-smooth with β ≤ L/D such that any (0.1, δ)-DP algorithm
A with δ = o(1/n2) has

sup
S∈Zn

E
[
F̂ (A(S);S)−min

x∈X
F̂ (x;S)

]
≥ Ω̃

(
LD

n2/3

)
.

Now we proceed to prove Theorem 11 and we assume without loss of generality that L = 1
and D = 1. We use techniques from [SU17] to extend the lower bound of Lemma D.3 to hold for
arbitrary d and ε. To this end, instead of lower bounding the excess loss, it will be convenient to
prove lower bounds on the sample size to achieve a certain excess loss α. More precisely, given a
dataset S ∈ Zn and algorithm A, we define its empirical excess loss on S

E(A,S) = E
[
F̂ (A(S);S)−min

x∈X
F̂ (x;S)

]
.

We also define its worst-case excess loss over all datasets of size n

E(A, n) = sup
S∈Zn

E(A,S).

We let n?(α, ε) be the minimal sample size that is required to achieve excess loss E(A, n?(α, ε)) ≤ α
using an (ε, δ)-DP algorithm A with δ = n−ω(1). We prove the following lemma which implies The-
orem 11.
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Lemma D.4. Let the assumptions of Theorem 11 hold. Then

n?(α, ε) ≥

Ω̃
(

1
α3/2ε

)
if α = 1/d

Ω̃
(√

d
αε

)
if α ≤ 1/d

The proof of Lemma D.4 basically follows from the following two Lemmas.

Lemma D.5. For 0 < α ≤ α0 and 0 < ε ≤ ε0 ≤ 0.1,

n?(α, ε) ≥ Ω
(α0ε0

αε
n?(α0, ε0)

)
.

Lemma D.6. We have that

n?(α = 1/d, ε = 0.1) ≥ Ω̃
(
d3/2

)
.

Before proving Lemmas D.5 and D.6, let us finish the proof of Lemma D.4. First, consider the case
α = 1/d. Lemma D.6 implies that

n?(α = 1/d, ε) ≥ Ω

(
n?(α = 1/d, ε = 0.1)

ε

)
≥ Ω̃

(
d3/2/ε

)
= Ω̃

(
1

α3/2ε

)
.

If α ≤ 1/d, then similarly we have

n?(α, ε) ≥ Ω

(
1

dαε

)
n?(α = 1/d, ε = 0.1) ≥ Ω̃

(√
d

αε

)
.

Hence Lemma D.4 follows. Finally, we provide proofs for the remaining lemmas.

Lemma D.6. This lemma follows directly from Lemma D.3. Indeed, Lemma D.3 implies that if
d ≥ Ω̃(n2/3) and ε = 0.1, the excess loss is lower bounded by E(A, n) ≥ Ω̃(1/n2/3). Stated
differently, if n ≤ Õ(d3/2) then E(A, n) ≥ Ω̃(1/n2/3) ≥ Ω̃(1/d) which proves the claim.

Lemma D.5. Given an (ε, δ)-DP algorithm A with E(A, n) ≤ α, we show how to construct A′ that
is (ε0, 4δε0/ε)-DP algorithm that works on datasets of size n′ = Θ( αε

α0ε0
n) such that E(A′, n′) ≤ α0.

This will prove the claim as we know that n′ ≥ n(α0, ε0). We now describe the construction of
A′. Given S ′ ∈ Zn′ and k > 0 to be chosen presently, we define a new dataset S as follows: the
first kn′ samples are k copies of S ′ and the remaining n − kn′ are new samples z ∈ Z that have
the loss function f(x; z) = 0 for all x ∈ X . Clearly, these functions are convex, 0-Lipschitz, and
0-smooth. We then define A′(S ′) = A(S). Note that for all x we have that F̂ (x;S) = kn′

n F̂ (x;S ′),
which implies that

E(A′,S ′) = E[F̂ (A(S);S ′)−min
x∈X

F̂ (x;S ′)]

=
n

kn′
E[F̂ (A(S);S)−min

x∈X
F̂ (x;S)]

=
n

kn′
E(A,S) ≤ nα

kn′
.

Therefore if n′ ≥ nα/kα0 we get E(A′,S ′) ≤ α0. Hence it remains to argue for privacy. Using the

group privacy property of private algorithms [SU17](Fact 2.2), the algorithm A′ is (kε, e
kε−1
eε−1 δ)-DP.

Setting k = blog(1 + ε0)/εc implies the claim as ekε − 1 ≤ ε0 and kε ≤ ε0.
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