
Journal of Machine Learning Research 2 (2002) 359-395 Submitted 10/01; Published 02/02

On Using Extended Statistical Queries to Avoid Membership
Queries

Nader H. Bshouty bshouty@cs.technion.ac.il

Vitaly Feldman felvit@tx.technion.ac.il

Department of Computer Science
Technion , Israel Institute of Technology,
Haifa, 32000, Israel

Editor: Dana Ron

Abstract

The Kushilevitz-Mansour (KM) algorithm is an algorithm that finds all the “large”
Fourier coefficients of a Boolean function. It is the main tool for learning decision trees and
DNF expressions in the PAC model with respect to the uniform distribution. The algorithm
requires access to the membership query (MQ) oracle. The access is often unavailable in
learning applications and thus the KM algorithm cannot be used.

We significantly weaken this requirement by producing an analogue of the KM algorithm
that uses extended statistical queries (SQ) (SQs in which the expectation is taken with re-
spect to a distribution given by a learning algorithm). We restrict a set of distributions that
a learning algorithm may use for its statistical queries to be a set of product distributions
with each bit being 1 with probability ρ, 1/2 or 1−ρ for a constant 1/2 > ρ > 0 (we denote
the resulting model by SQ–Dρ). Our analogue finds all the “large” Fourier coefficients of
degree lower than c log n (we call it the Bounded Sieve (BS)). We use BS to learn decision
trees and by adapting Freund’s boosting technique we give an algorithm that learns DNF
in SQ–Dρ. An important property of the model is that its algorithms can be simulated
by MQs with persistent noise. With some modifications BS can also be simulated by MQs
with product attribute noise (i.e., for a query x oracle changes every bit of x with some
constant probability and calculates the value of the target function at the resulting point)
and classification noise. This implies learnability of decision trees and weak learnability of
DNF with this non-trivial noise.

In the second part of this paper we develop a characterization for learnability with these
extended statistical queries. We show that our characterization when applied to SQ–Dρ is
tight in terms of learning parity functions. We extend the result given by Blum et al. by
proving that there is a class learnable in the PAC model with random classification noise
and not learnable in SQ–Dρ.
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1. Introduction and Overview

The problems of learning decision trees and DNF expressions are among the most well
studied problems of computational learning theory. In this paper we address learning of
these classes in Valiant’s popular PAC model with respect to the uniform distribution.1

The first algorithm that learns decision trees in this setting was given by Kushilevitz and
Mansour [KM91]. The main tool that they used is the beautiful technique due to Goldreich
and Levin [GL89]. Given a black box that will answer membership queries for a Boolean
function f over {0, 1}n, their technique efficiently locates a subset A of the inputs of f
such that the parity χA of the bits in A is a weak approximator for f with respect to the
uniform (if such A exists). The correlation of the parity function χA is called the Fourier
coefficient of A. Using this technique Kushilevitz and Mansour give an algorithm that finds
all the Fourier coefficients of a Boolean function larger than a given threshold (it is usually
referred as the KM algorithm). They prove that this algorithm can be used to efficiently
learn the class of decision trees. Later Jackson [Ja94] again used the Kushilevitz-Mansour
algorithm and Freund’s boosting technique to build his famous algorithm for learning DNF
expressions. An important property of Freund’s boosting in this context is that it requires
weak learning only with respect to distributions that are polynomially close to the uniform.

As we have mentioned the core of both algorithms utilizes membership query (MQ)
oracle to find weakly approximating parity function. That is, in order to use these algo-
rithms we need access to values of the learned function at any given point. Angluin and
Kharitonov [AK91] proved, under standard cryptographic assumptions, that if DNF ex-
pressions are learnable in the distribution-independent PAC model with MQs then they
are also learnable without MQs, in other words membership queries are not helpful in the
distribution-independent PAC learning model. On the other hand, there is no known algo-
rithm that learns the above-mentioned classes in the PAC model with respect to the uniform
distribution without the use of MQs.

The access to membership query oracle is not available in most of applications and
thus the question of whether it is possible to avoid the use of them is of great theoretical
interest and practical importance. We investigate the way to reduce the dependence on
MQs for the distribution-specific PAC learning that results from the following approach.
Learning in the basic PAC model (without MQs) represents learning without any control
over the points in which the value of the target function will be known. On the other
hand, membership queries represent the total control over these points. Both of these
situations can be seen as (totally) different amount of control over the probability that the
next sampled point will be some specific x. This observation suggests that we can represent
any intermediate situation by allowing the learning algorithm to choose the distribution
with respect to which the points will be sampled. The set of distributions D that a learning
algorithm may choose from measures the amount of control that the learning algorithm has.
Naturally, such an extension defines learnability with respect to a given set of distributions
D or learnability in the PAC–D model with respect to D. In this paper we actually discuss
SQ–D—the statistical query (SQ) analogue of the above model. The SQ model introduced
by Kearns [Kea93] allows the learning algorithms to get “good” estimates of expectation
of any (polynomially computable) function involving the value of f(x) with respect to the

1. This and all other models of learning that are mentioned further are fully defined in the following section.
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target distribution D. The major benefit of this restriction of the PAC model is that every
algorithm in this model can be automatically transformed into classification noise tolerant
algorithm. Analogously, the learning algorithm in SQ–D is allowed to ask SQs with respect
to any distribution in D. This restriction will be sufficient for the learning algorithms
that we demonstrate and possesses the property similar to that of SQ model: under some
limitations on D every algorithm in SQ–D can be simulated using MQs with persistent
classification noise.

Learning with respect to the uniform is applicable in the case when all the input bits (or
attributes) are independent, i.e., the value of each attribute of the next randomly sampled
point is chosen randomly and independently of other attributes. For this case we increase
the amount of control by allowing the learning algorithm to influence the probability with
which any attribute of the next sample point will be 0 or 1. Particularly, we consider the
set Dρ containing all the product distributions with each input bit being 1 with probability
ρ, 1/2 or 1− ρ for a constant 0 < ρ < 1/2.

Learning algorithm in SQ–Dρ can ask for a statistical query with respect to product
distribution with some attributes biased towards 0 or 1. Amount of this bias is given by
ρ and is limited by restrictions on ρ. It is easy to see that boundary values of ρ represent
the regular PAC learning with respect to the uniform distribution (ρ = 1/2) and the PAC
model with membership queries (ρ = 0).

We give a weaker analogue of the KM algorithm for SQ–Dρ that efficiently finds all the
target function Fourier coefficients for sets with less than c log n attributes and larger than
a given threshold (we call it the Bounded Sieve). We show that the Bounded Sieve (BS) by
itself is, in fact, sufficient for learning the class of decision trees and weakly learning the
class of DNF formulae. Then, by employing Freund’s boosting algorithm, we prove that
DNF are strongly learnable in SQ–Dρ. This requires an adaption of Freund’s technique to
SQ–Dρ. The adaptation we use is simpler and more efficient than a more general one by
Aslam and Decatur [AD93] (for the regular SQ model).

As we have noted our SQ–Dρ algorithms can be automatically transformed into per-
sistent classification noise tolerant algorithms. We then show how to modify BS so that
it could handle another non-trivial noise: product attribute noise in membership queries.
This type of noise was previously considered as appearing in randomly sampled points, i.e.,
in the regular PAC model [SV88; GS95; DG95; BJT99]. We extend this noise model to
learning with membership queries. Particularly, for every sample point x (randomly sam-
pled or asked as a membership query) the oracle flips every bit i of x with probability pi and
returns the value of target function at the resulting point (unless classification noise is also
present). This type of noise may reflect the situation when communication with the oracle
is done using faulty channel or querying very specific point is difficult (or even impossible)
to attain. Specifically, we show that our implementation of BS handles any known attribute
noise rates bounded away from 1/2 by a constant. This implies learnability of decision trees
and weak learnability of DNF in this setting. These results can also be extended to the case
when the noise rate is unknown yet uniform, that is, equal for all the attributes.

In the second part of this paper we show some negative results about the newly intro-
duced model. We start by developing a characterization of classes weakly learnable in the
regular SQ model and extend it to the SQ–D model. The characterization will enable us
to show that the class of all parity functions having at most k(n) variables is not weakly
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learnable in SQ–Dρ if k(n) is ω(log n). This fact complements the Bounded Sieve which
obviously learns every such class for k(n) = O(log n). Another interesting application of
this characterization will help us to show that although the model we have introduced is
powerful enough to learn DNF expressions, it still cannot learn a class of parity functions
learnable in the PAC model with classification noise (to show this we rely on the result by
Blum et al. [BKW00]). We also show that the class of all parity functions is not weakly
learnable with respect to any “non-biased” distribution (i.e., not containing points with
probability greater than 1

poly(n)) even in SQ–D for D containing all “non-biased” distri-
butions. This gives futher evidence that the class of all parity functions is hard for any
statistics based learning.

1.1 Relation to Other Works

Shamir and Shwartzman [ShSh95] were first to consider extending the notion of statistical
query as a way to produce (persistent) noise tolerant algorithms. Their extension is a
statistical query analogue of “second-order” queries, that is, each PAC example consists of
a pair (x, y) ∈ X2 with label ` = (f(x), f(y)) and examples are sampled randomly with
respect to distributions over X2 (not necessarily product). They show that the KM algorithm
can be implemented using this type of extended statistical queries and prove that this
implementation can be simulated using membership queries with persistent classification
noise. Using the same approach it was proven [JSS97] that DNF can be learned by noisy
membership queries.

The main distinction between this approach and the SQ–D is that Jackson, Shamir
and Shwartzman investigated strong extensions of the SQ model which can be simulated
by noisy membership queries and then showed that DNF is learnable in an extension of
this kind. On the other hand, we show relatively weak extension of the SQ model, based
on regular (“first-order”) statistical queries, in which DNF is learnable. The extension we
describe can as well be simulated by noisy membership queries.

Kearns in his original paper on the SQ model [Kea93] showed that the SQ model is
weaker than the regular PAC model. Specifically, he proved that the class of all parity
functions is not learnable in the SQ model. Subsequently, Blum et al. [BFJ+94] gave a
general characterization of the complexity of statistical query learning in terms of the num-
ber of uncorrelated functions in the concept class. We give a very similar characterization
in terms of number of functions required to “approximate” every function in the concept
class. Our characterization is not stronger as a tool for proving negative results and its
main advantage is its very simple proof as well as easy extendability to learning in SQ–D.

1.2 Organization

The rest of this paper is organized as follows. In the next section we provide definitions and
several well-known facts that are used later in the paper. In Section 3 we define the SQ–D
model and present all the learnability results for the model. Discussion of the attribute
noise and the implementation of BS for PAC learning with membership queries corrupted
by product attribute noise is given in Section 4. Finally, the characterization of classes
weakly learnable in SQ–D and its applications are described in Section 5.
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2. Definitions and Notation

Before we start describing our results we provide all the relevant definitions. This section
describes models, tools, and techniques that we are employing in our discussion.

2.1 General Notation

We consider an input space X = {0, 1}n. A concept is a Boolean function on X. For
convenience, when applying the Fourier transform technique, we define Boolean functions to
have output in {−1,+1}, where 1 stands for true and −1 for false. A concept class F is a
set of concepts. Concept class is defined together with the representation of every concept in
it. The representation scheme used (e.g., DNF or decision tree) defines the mapping size(f)
that measures the size of the smallest representation of f within the given representation
scheme. Concept class together with a representation scheme is called representation class.
We denote the representation class of DNF expressions by DNF, and the representation
class of decision trees by DT.

For any vector y we denote by yi the i-th element (or bit) of y and by y[i,j] we denote
yiyi+1 . . . yj . Bits of a member in our domain are usually called attributes and are referred
using variables x1, x2, . . . , xn. We use [a]k to denote a vector of k elements each equal to a.
We use U to denote the uniform distribution over X. For Boolean functions f(x) and g(x)
over the domain X we say that g(x) ε−approximates f(x) with respect to distribution D
(on X) if PrD[f(x) = g(x)] ≥ 1− ε. It is easy to see that this is equivalent to saying that
ED[fg] ≥ 1− 2ε. For any real-valued function φ define L∞(φ) = maxx∈X |φ(x)|.

Denote by ∆(γ) and ∆′(γ) probability distributions over {0, 1} and {−1, 1} respectively,
such that the probability of 1 is γ (that is, the probability distribution of Bernoulli random
variable with parameter γ).

If p(n) = O(q(n)) and q′(n) is q(n) with all the logarithmic factors removed we write
p(n) = Õ(q(n)). Similarly we define Ω̃ for lower bounds. This extends to k-ary functions
in an obvious way.

2.2 Learning Models

Throughout this paper we refer to several models of learning. Below we describe all the
mentioned models and provide the relevant definitions.

2.2.1 The PAC Model

Most of the models we are discussing are based on Valiant’s Probably Approximately Correct
(PAC) model of learnability. The basic version of this model reflects passive learning from
random examples. Formally, let f be a Boolean function and D be a distribution over X.
An example oracle for f with respect to D — EX(f, D), is an oracle that on request draws an
instance x at random according to the probability distribution D and returns the example
〈x, f(x)〉. A membership oracle for f — MEM(f), is an oracle that given any point x returns
the value f(x). Let ε and δ be positive values (called the accuracy and the confidence of
learning, respectively). We say that the representation class F is (strongly) PAC-learnable
if there is an algorithm A such that for any ε,δ, f ∈ F of size s (the target function) and any
distribution D, with probability at least 1−δ, algorithm A(EX(f, D), n, s, ε, δ) produces an
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ε–approximation for f with respect to D in time polynomial in n, s, 1/ε and log (1/δ). We
generally drop the “PAC” from “PAC-learnable” when the model is clear from the context.

We will consider a number of variations on the basic PAC model. Let M be any model
of learning (e.g., PAC). If F is M-learnable by an algorithm A that requires a membership
oracle then F is M-learnable using membership queries (or learnable in M+MQ). If F is
M-learnable for ε = 1/2− p(n, s), where p(·, ·) is a fixed polynomial, then F is weakly M-
learnable. Note that in the above definitions we have placed no restriction on the example
distribution D, that is they are distribution-independent. If F is M-learnable only for a
specific distribution D (known to A) then F isM-learnable with respect to D (such learning
is called distribution-specific and the learning model is denoted by MD).

Remark 1 When we are dealing with concept classes in which all the concepts have repre-
sentations of polynomial (in n) size the parameter s could be omitted from the discussion.

2.2.2 Noise Models

In the above described models it was always assumed that all the labels (i.e., values of the
target function) that are received from oracles are accurate. We are now going to describe
the extensions of the above models in which labels provided with the examples (random or
received from membership oracle) are corrupted by random noise.2 This extension was first
considered in the learning literature by Angluin and Laird [AL88]. Since then, in addition
to being the subject of a number of theoretical studies [AL88; Lai88; Sl88], the classification
noise model has become a common paradigm for experimental machine learning.

Below we will give the formal definitions that incorporate the notion of random classi-
fication noise into the PAC learning model. A new parameter η ≤ 1/2 called the noise rate
is introduced and the regular example oracle EX(f,D) is replaced with the faulty oracle
EXη(f,D). On each call, EXη(f,D) first draws an input x according to D. The oracle then
chooses randomly a value ζ ∈ {−1, 1}; 1 with probability η and −1 with probability 1− η
and returns ζf(x). When η approaches 1/2 the result of the corrupted query approaches
the result of the random coin flip, and therefore learning becomes more and more difficult.
Thus the running time of algorithms in this model is allowed to polynomially depend on

1
1−2η . This model of noise is not suitable for corrupting labels returned by a membership
oracle MEM(f) since a learning algorithm can, with high probability, find the correct label
at point x by asking the label of x polynomial (in 1

1−2η ) number of times and then returning
the label that appeared in the majority of answers. An appropriate modification of the noise
model is the introduction of persistent classification noise by Goldman, Kearns and Shapire
[GKS94]. In this model, as before, the answer to a query at each point x is corrupted by
random value ζ. But if the oracle was already queried about the value of f at some specific
point x, it returns the same value it has returned in the first query (i.e, in such a case the
noise persists and is not purely random). There is another subtle but important distinction
of this model. We cannot require learning algorithms in this model to work for an arbi-
trarily small confidence parameter δ. Because with some (though negligible) probability
target function can be persistently totally corrupted (for example negated) making learning
absolutely infeasible. So we must impose a positive lower bound on the confidence δ that

2. Noise in points themselves or attribute noise is defined in Section 4.
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can be required from the learning algorithm in the persistent noise model, although this
bound will be negligible.

2.2.3 The Statistical Query Learning Model

The statistical query model introduced by Kearns [Kea93] is a natural restriction of the
PAC learning model in which a learning algorithm cannot see labelled examples of the
target concept, but instead may only estimate probabilities involving the target concept.
Formally, when learning with respect to distribution D the learning algorithm is given access
to STAT(f, D) – a statistical query oracle for target concept f with respect to distribution
D. A query to this oracle is a pair (ψ, r), where ψ : {0, 1}n × {−1, +1} → {−1, +1} is a
query function and r ∈ [0, 1] is a real number called the tolerance of the query. The oracle
may respond to the query with any value v satisfying

|ED[ψ(x, f(x))]− v| ≤ r .

We denote the result returned by oracle STAT(f, D) to query (ψ, r) by STAT(f,D)[ψ, r].
We say that the concept class F is (strongly) learnable from statistical queries (SQ–

learnable) if there is a learning algorithm A, and polynomials p(·, ·, ·), q(·, ·, ·) and r(·, ·, ·)
such that for every n, f ∈ F , distribution D and ε the following holds. Given n, the size s of
f , ε and access to STAT(f, D), algorithm A produces an ε–approximation to f with respect
to D in time bounded by p(n, s, 1/ε). Furthermore, algorithm A makes queries (ψ, r) in
which ψ can be evaluated in time bounded3 by q(n, s, 1/ε), and in which r is lower-bounded
by 1/r(n, s, 1/ε).

Although the “usual” randomness of PAC algorithms is incorporated in the statistical
queries some applications may still need randomization. In this case we, as usual, have
confidence parameter δ, i.e., get the required approximation with probability at least 1− δ,
and the running time of the algorithm is also polynomial in log (1/δ).

It is important to note that the statistical query model is indeed a restriction of the
basic PAC model. This follows from the fact that a query (ψ, r) to STAT(f, D) where ψ
can be computed in polynomial time and r lower-bounded by inverse of the polynomial can
(with high probability) be estimated (within r) by computing ψ on polynomial number of
samples and then averaging the result (see Section 2.3 for more details). Moreover, as it
was shown by Kearns [Kea93], this estimation can also be made in the presence of random
classification noise. This means that any SQ algorithm can be automatically transformed
into noise tolerant algorithm. This important property of the model allowed Kearns to
obtain noise-tolerant algorithms for practically every concept class for which an efficient
learning algorithm in the original noise-free PAC model is known.

2.3 Estimating Expected Values

We will frequently need to estimate the expected value of a random variable. Although the
SQ model itself provides us with such estimates, sometimes a random variable will be a result
of a statistical query. In such a case we usually cannot use a statistical query to estimate

3. In most of the cases we will use simple and explicit query functions. In such cases we omit the analysis
of complexity of these functions.
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the expectation of the variable. Thus we will find the expectation by sampling the variable
and averaging the results. The justification for this technique is usually referred as Chernoff
bounds. The Chernoff’s lemma which is concerned with 0,1 random variables was generalized
by Hoeffding. Hoeffding’s lemma, presented below, allows to compute the sample size needed
to ensure that with high probability the sample mean closely approximates the true mean
of the random real-valued variable.

Lemma 2 (Hoeffding) Let Xi, 1 ≤ i ≤ m, be independent random variables all with
mean µ such that for all i, a ≤ Xi ≤ b. Then for any λ > 0,

Pr

[∣∣∣∣∣
1
m

m∑

i=1

Xi − µ

∣∣∣∣∣ ≥ λ

]
≤ 2e−2λm/(b−a)2 .

According to the lemma if we sample randomly and independently a random variable
Y with values in [a, b] then to reach the accuracy of at least λ with confidence of at least δ
it is sufficient to take

(b− a)2 ln (2/δ)/(2λ2) = O(log (1/δ)(b− a)2/λ2)

samples of Y . That is, Hoeffding’s lemma gives the following corollary.

Corollary 3 Let Y represent a random variable that produces values in the range [a, b].
Then there is an algorithm AMEAN(Y, b−a, λ, δ) that for any such Y and any λ > 0 produces
a value µ such that |E[Y ]− µ| ≤ λ with probability at least 1− δ. Furthermore, AMEAN runs
in O(log (1/δ)(b− a)2/λ2) time.

Remark 4 Another implication of the fact that a value of random variable is a result of a
statistical query is that we get its value within some tolerance r. It is easy to see that in
such a case the above execution of procedure AMEAN will return the expectation within r + λ.

In general, we say that a constant value c can be efficiently approximated if there exists
an algorithm that for every τ and δ, with probability at least 1 − δ produces a value that
estimates c within τ and runs in time polynomial in 1/τ and log (1/δ).

The SQ model gives the learner ability to estimate expectations of Boolean functions
involving the value of the target function f(x). In further algorithms we will need to get
expectations of any real-valued functions involving f(x). For this purpose we will rely on
the following simple lemma.

Lemma 5 There exists a procedure RV-SQ that for every real-valued function φ : {0, 1}n ×
{−1, 1} → [−b, b], tolerance r and distribution D, RV-SQ(STAT(f, D), φ, b, r) returns a value
v satisfying

|EDφ(x, f(x))− v| ≤ r

Its time complexity is O(log (b/r)). The required tolerance is bounded from below by r
4b log (b/r)

and complexity of the query functions is the complexity of computation of φ plus O(n).
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Proof: We find the required expectation by decomposing φ into linear combination of
Boolean functions according to its binary representation in the following way:
Let k be equal to dlog be and l = dlog 2

r e

φ(x, f(x)) = −2k + 2kφk(x, f(x)) + 2k−1φk−1(x, f(x)) + . . . + φ0(x, f(x))+

1
2
φ−1(x, f(x)) + . . . + 2−lφ−l(x, f(x)) + ψ(x, f(x))

Where all the φi are Boolean 0,1-valued functions representing the bits of φ(x, f(x)) + 2k

(nonnegative function). Choice of l ensures that 0 ≤ ψ(x, f(x)) ≤ r/2. Since we would like
the composition to use ±1-valued functions, we can further write

φ(x, f(x)) = 2k−1(2φk(x, f(x))− 1) + 2k−2(2φk−1(x, f(x))− 1) + . . .+

2−l−1(2φ−l(x, f(x))− 1) + (ψ(x, f(x))− 2−l−1)

For every −l ≤ j ≤ k, 2φj(x, f(x))− 1 is a ±1-valued Boolean function depending on x
and f(x). Thus to get the required approximation, for every −l ≤ j ≤ k we approximate
ED[2φj(x, f(x))− 1] within r

2j+1(k+l+1)
using query

(
2φj(x, f(x))− 1,

r

2j+1(k + l + 1)
, D

)

Let µj be the result of the query. The procedure returns the value
∑
−l≤j≤k 2jµj . This

value is a valid result since

|EDφ(x, f(x))−
∑

−l≤j≤k

2jµj | ≤
∑

−l≤j≤k

2j r

2j+1(k + l + 1)
+ ED[|ψ(x, f(x))− 2−l−1|] ≤

∑

−l≤j≤k

r

2(k + l + 1)
+ r/2 = r.

The complexity of this algorithm is O(log (b/r)). The required tolerance is at least

r

2k+1(k + l + 1)
≥ r

4b log (b/r)
.

Complexity of the query functions is the complexity of computation of φ plus O(n). ¤

2.4 The Fourier Transform

Many parts of our analysis rely heavily on the use of the well-known Fourier transform tech-
nique. This beautiful technique was introduced to the learning theory by Linial, Mansour,
and Nisan [LMN89]. Below we give a short description of the technique and its notation
(an extended survey of the technique and the KM algorithm was given by Mansour [Man94]).

Since all the expectations and probabilities we use when applying this technique will be
with respect to the uniform distribution, we will sometimes omit U in our formulae. For
every vector a ∈ {0, 1}n we define χa—the parity function for the vector by

χa(x) = (−1)
P

i∈{1,...,n} aixi
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A common alternative is to associate a parity function with a set A ⊆ {1, . . . , n} of attribute
indices that influence the parity. This definition implies that χa and χA are equivalent
whenever A = {i | ai = 1}. Also define the inner product by 〈f, g〉 = E[f(x)g(x)] and
define the norm as usual by ‖f‖ =

√
Ex[f2(x)]. In this context we define w(a) to be the

number of bits ai equal to 1 in a and call it the weight of a. Let ⊕ denote the bit-wise XOR
operation on binary vectors. Parity functions possess several important and easily verifiable
properties:

1. χa(x)χb(x) = χa⊕b(x);

2. χa(x)χa(y) = χa(x⊕ y);

3. Ex[χa(x)] = 0 for every a 6= [0]n;

4. χ[0]n ≡ 1 and thus Ex[χ[0]n(x)] = 1.

By these properties, for every a, b ∈ {0, 1}n,

〈χa, χb〉 = Ex[χa(x)χb(x)] = Ex[χa⊕b(x)] =
{

0 a 6= b
1 a = b

Thus the set {χa}a∈{0,1}n is orthonormal. Its size is 2n which is also the dimension of
the vector space of real-valued functions on {0, 1}n, i.e., the set forms the basis for the
vector space. That is, every function g : {0, 1}n → R can be uniquely expressed as a linear
combination of parity functions:

g(x) =
∑

a∈{0,1}n

ĝ(a)χa(x) .

The coefficients ĝ(a) are called Fourier coefficients and vector of coefficients ĝ the Fourier
transform of g. The degree of the coefficient ĝ(a) is the weight of a.4 Because of the
orthonormality of the parity functions, ĝ(a) = E[g(x)χa(x)]. Thus ĝ(a) represents the
correlation of g with the parity function χa.

Parseval’s identity states that for every function g, ‖g‖2 = E[g2] =
∑

a ĝ2(a). For
Boolean g this implies that

∑
a ĝ2(a) = 1.

The Fourier transform technique is usually used in the following way. Given some
access to the target function f we try to find its Fourier coefficients or at least the “largest”
among them (here and in further discussion we refer to the absolute value of the coefficient).
These coefficients define a real-valued function g. We then produce hypothesis by taking
h = sign(g). Justification for this method is provided by the following well-known lemma.

Lemma 6 Let f be a Boolean function and g be any real-valued function then

Pr[f(x) 6= sign(g)(x)] ≤ E[(f(x)− g(x))2] =
∑

a∈{0,1}n

(f̂(a)− ĝ(a))2 .

4. For a parity function defined using a set of indices the degree of the corresponding coefficient is the size
of the set.
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2.5 The KM Algorithm

One of the most fundamental application of the Fourier analysis is the Kushilevitz-Mansour
algorithm [KM91]. This randomized algorithm uses membership queries to find all the
Fourier coefficients of the target function larger than some threshold θ in time polynomial
in n, log (1/δ) and θ−1. The algorithm is based on an ingenious way to estimate the sum of
squares of all the Fourier coefficients for vectors starting with some given prefix. Formally
for 0 ≤ k ≤ n and α ∈ {0, 1}k denote

Cα =
∑

b∈{0,1}n−k

f̂2(αb) .

As it has been proved by Kushilevitz and Mansour

Cα = Ex [Ey[f(yx)χα(y)]]2 ,

where the expectation is uniform over x ∈ {0, 1}n−k, y ∈ {0, 1}k. This formula means that
Cα can be efficiently approximated by random sampling (see Section 2.3). If there exists at
least one Fourier coefficient for a vector starting with α and larger (by absolute value) than
θ then Cα ≥ θ2. Using this simple observation Kushilevitz and Mansour wrote a recursive
procedure (named Coef) that given α finds all the Fourier coefficient for vectors starting
with α and larger than θ as follows. For α being a vector of length n Coef(α) returns the
vector if its Fourier coefficient is larger than θ. For shorter prefixes the procedure checks
whether Cα ≥ θ2. If so executes itself for prefixes α ·0 and α ·1 and returns the union of the
results. Otherwise (Cα < θ2), returns the empty set. When executed on an empty prefix
this procedure should return all the Fourier coefficients that are larger than θ. Effectiveness
of this algorithm follows from the fact that for any given length of prefix k

∑

α∈{0,1}k

Cα =
∑

a∈{0,1}n

f̂(a)2 = ‖f‖2 = 1 .

This means that for any given length of prefix Coef will be called at most 1/θ2 times, i.e.,
the resulting algorithm is polynomial in n, log (1/δ) and 1/θ.

In this description we have neglected the fact that Cα is not known exactly but only
estimated. Minor modifications required to solve this problem can be found in the origi-
nal description of the algorithm [KM91] or in the similar analysis of our analogue to this
algorithm described in Section 3.2.

Remark 7 It can be easily seen that the algorithm can be applied to any real-valued function
φ(x) (and not only to Boolean). In such a case for any given length of prefix the procedure
Coef will be called at most ‖φ‖2/θ2 and thus running time of the KM algorithm becomes
polynomial in ‖φ‖. Moreover, we do not need to know the value of φ(x) exactly. An ability
to efficiently estimate the value of φ(x) with any desired accuracy is sufficient since the
value of φ(x) is used only for estimating Cα’s and Fourier coefficients of φ.

3. Learning by Extended Statistical Queries

In this section we introduce a new model of learning. The model (or actually a collection of
models) we define is at least as strong as the basic PAC model and is weaker (or equivalent)
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to the use of membership queries. For all of our applications a restriction of the new model
to statistical queries is sufficient. Moreover, as we will demonstrate, the SQ version of the
new model has a few important advantages. Thus we almost immediately start discussing
the restricted version.

We begin by defining the SQ–D model and discussing its properties. Then we apply
these general ideas to learning of decision trees and DNF expressions with respect to the
uniform distribution. In particular, we implement the Bounded Sieve algorithm which has
the functionality of the KM algorithm with an additional restriction. The Bounded Sieve
by itself is sufficient for learning of DT and weak learning of DNF. By adapting Freund’s
boosting technique to our model we show that DNF expressions are also strongly learnable.

3.1 Extending the SQ Model

We are now going to give a detailed description of the extension of the basic PAC model and
the SQ model. In this new model we allow the learning algorithm to supply a distribution
with respect to which the next point will be sampled. Formally, let D be a distribution over
X and D be a set of distributions over X containing distribution D. The new example oracle
EX(f,D) is defined as follows. A query to this oracle is a distribution D′ ∈ D. To such a
query the oracle EX(f,D) responds with example 〈x, f(x)〉, where x is sampled randomly
and independently according to distribution D′. In other words, access to EX(f,D) is
equivalent to access to all the oracles of the form EX(f, D′), where D′ ∈ D. Learning with
access to the newly-defined oracle is referred as learning in the PAC–D model. Learnability
(with respect to D) in this new model is defined as in the regular PAC model with the
regular example oracle EX(f,D) replaced by EX(f,D).

The extension of the PAC learning model obviously possesses the following properties:

• PAC–D is equivalent to the regular PAC model for D = {D};
• We can simulate the PAC–D model using membership queries;

• If we do not restrict D we might be able to simulate membership queries (e.g., using
distributions with all the weight concentrated in one point).

Our next step is restricting the PAC–D model to statistical queries, or extending Kearns’
SQ model in the similar fashion. That is, instead of the regular STAT(f,D) oracle a
learning algorithm in the SQ–D model is provided with access to all the oracles STAT(f,D′)
where D′ ∈ D. More formally, learning algorithm in the SQ–D model is supplied with the
STAT(f,D) oracle, where f is the target concept. A query to this oracle is a triple (ψ, r,D′)
where ψ : {0, 1}n × {−1, +1} → {−1, +1} is a query function, r ∈ [0, 1] is a tolerance (as
in the SQ model) and D′ is a distribution from D. To such a query the oracle responds
with the value v satisfying |ED′ [ψ(x, f(x))]− v| ≤ r. Respectively, we say that the concept
class F is learnable in the SQ–D model with respect to D if it is learnable by a polynomial
algorithm (as defined in the regular SQ model) with access to the newly-defined oracle.

An important property of the model that results from the fact that it is statistical-
query-based is that STAT(f,D) can be simulated by membership queries in the presence
of random classification noise. The simulation is done by offsetting the effect of the noise
on a query [Kea93]. Since we are simulating using membership queries we are actually
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interested in learning with persistent classification noise. Offsetting noise in this model
can be a more complicated task. However, if all the sample points in the sample that was
used for simulating statistical queries are different then the persistent noise in the sample
is equivalent to usual random classification noise and therefore we can offset the effect of
noise in the same way as before. In the following theorem we show that under certain
simple restriction on set D the probability to get two equal points in the sample will be
negligible and therefore we will be able to use Kearns’ noise offsetting procedure.5 Denote
by L∞(D) = maxD′∈D{L∞(D′)}.

Theorem 8 Let F be a concept class and D be a set of distributions with sampling oracle
available for every D′ ∈ D. If F is learnable in SQ–D with respect to D and L∞(D) < τn

for a constant 0 < τ < 1, then F is learnable with respect to D using membership queries
corrupted by random persistent classification noise.

Proof: LetA be an algorithm that learns F in SQ–D. Let us examine the execution ofA for
a particular f ∈ F . We can assume that the learning parameters s and ε are subexponential6

in n (otherwise a trivial exponential learning algorithm will solve the problem). The number
of queries that A asks during its execution is bounded by a fixed polynomial in n, s, and ε
(denote it by p1(n, s, ε−1) ). Let 1/p2(n, s, ε−1) denote the inverse-polynomial bound on the
required accuracy of every query. Let σ = τn/2

2p1(n,s,ε−1)
. According to Corollary 3, in order

to estimate all the A’s queries with accuracy of 1/p2(n, s, ε−1) and with confidence of σ
polynomial number of sample points is required (the polynomial depends on n, s, ε−1, and

1
1−η since the estimation is done in the presence of noise). Denote this polynomial bound
by p3(n, s, ε−1, 1

1−η ). Assuming that the noise is random, all the estimations will succeed
with probability at least 1 − σp1(n, s, ε−1) = 1 − τn/2/2. The probability to see a point
more than once in the above sample is less than

p2
3(n, s, ε−1,

1
1− η

)L∞(D) ≤ p2
3(n, s, ε−1,

1
1− η

)τn < τn/2/2 . (1)

Therefore, with probability at least 1−τn/2/2, the noise in the generated sample is truly
random. This means that the simulation with succeed with probability at least 1− τn/2.

Now, if we impose a lower bound of τn/2 on confidence δ that can be required from the
learning algorithm (as is allowed when the noise is persistent), then the above-described
procedure gives the algorithm that learns F by using membership queries with persistent
classification noise. ¤

3.2 Learning with Respect to the Uniform Distribution Using Product
Distributions

In this section we will examine set D that contains product distributions such that every
input bit is 1 with probability ρ , 1/2 or 1−ρ, that is, for every input bit xi, Pr[xi = 1] = pi

independently of all the other inputs and pi ∈ {ρ, 1/2, 1 − ρ} (we call p = p1p2 . . . pn a

5. Proof of this theorem can be easily extracted from [JSS97].
6. A more accurate restriction on these parameters can be deduced from equation (1).
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probability vector). We assume that ρ is a constant satisfying 1/2 > ρ > 0. For every
p ∈ {ρ, 1/2, 1 − ρ}n denote by Dp the product distribution defined by this probability
vector. Denote by

Dρ = {Dp | p ∈ {ρ, 1/2, 1− ρ}n} .

This distribution class will be used to learn with respect to the uniform distribution which
itself is contained in Dρ for any ρ.

For a probability vector p and x ∈ {0, 1}n denote by p⊕ x probability vector for which
(p ⊕ x)i = pi if xi = 0 and (p ⊕ x)i = 1 − pi if xi = 1. Since p ∈ {ρ, 1/2, 1 − ρ}n we also
have p⊕ x ∈ {ρ, 1/2, 1− ρ}n.

According to the discussion in Section 1, we call this ρ the degree of control that a
learning algorithm in SQ–Dρ has. Intuitively, smaller values of ρ represent larger degree of
control (with 0 giving the equivalent of membership queries). This is proven in the next
lemma.

Lemma 9 If 1/2 ≥ ρ1 ≥ ρ2 > 0 then any algorithm in SQ–Dρ1 can be simulated by a
randomized algorithm in SQ–Dρ2.

Proof: We show that a result of any statistical query in SQ–Dρ1 can be efficiently approx-
imated in SQ–Dρ2 . Let (φ, r,Dp) be a query to STAT(f,Dρ1). For π ∈ [0, 1] we define
q = [π]n (i.e., vector with every element equal to π). Let x1 and x2 be chosen randomly
according to ∆(π) and ∆(ρ). It is easy to verify that x1 ⊕ y1 is distributed according to
∆(π +ρ− 2πρ). When sampling with respect to a product distribution Dp, bit i is sampled
randomly and independently according to distribution ∆(pi). Therefore,

Ey∼Dp [φ(y, f(y))] = Ex∼Dq

[
Ey∼Ds⊕x [φ(y, f(y))]

]
, (2)

where s is a probability vector such that pi = π + si − 2πsi or si = pi−π
1−2π . For π = ρ1−ρ2

1−2ρ2

(π ∈ [0, 1] since 1/2 ≥ ρ1 ≥ ρ2 > 0) we get that

si =





ρ2 pi = ρ1

1− ρ2 pi = 1− ρ1

1/2 pi = 1/2

Thus Ds ∈ Dρ2 and for every x, Ds⊕x ∈ Dρ2 , i.e., Ey∼Ds⊕x [φ(y, f(y))] can be estimated by
a query in SQ–Dρ2 . Equation (2) means that the result of query (φ, r,Dp) can be efficiently
approximated by sampling in SQ–Dρ2 . ¤

Remark 10 For the simplicity of the exposition we have chosen the degree of control to
be uniform over all the attributes (and equal to ρ). Alternatively, we can consider classes
of distributions for which this degree is different for each attribute. It can be easily shown
(by slightly modifying the proof of Lemma 9) that if D is a class of distributions giving a
learning algorithm degrees of control in range [ρ1, ρ2] then the SQ–D model is not stronger
than SQ–Dρ1 and not weaker than SQ–Dρ2.

It is important to note that according to Theorem 8 learning in SQ–Dρ implies learning
with persistent noise since L∞(Dρ) = (1− ρ)n.
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3.3 An Analogue to the KM Algorithm

Our purpose is to give an algorithm in the SQ–Dρ model that could find “large” Fourier
coefficients of the target function. When membership queries are available this task can be
performed using the KM algorithm. As we will show in the characterization section this task
cannot be performed in the SQ–Dρ model. Instead we will give a weaker analogue of the KM
algorithm implemented in the SQ–Dρ model. It will find all the “large” Fourier coefficients
of degree lower than ` in time polynomial in 2` thus allowing only the Fourier coefficients
with degree bounded by c log n to be found efficiently. Particularly, for the target function
f , given parameters n, θ, ` and δ it will, with probability at least 1−δ, find a set S ⊆ {0, 1}n

with the following properties:

• for all a, if |f̂(a)| ≥ θ and w(a) ≤ ` then a ∈ S;

• for all a ∈ S, |f̂(a)| ≥ θ/2.

We say that such a set possesses the large Fourier coefficient property for function f , thresh-
old θ and degree ` (this property can be defined for any real-valued function).

The KM algorithm is based on a subroutine that estimates the sum of squares of all the
coefficients for vectors starting with given prefix. In the same fashion our algorithm will
be based on ability to estimate weighted sum of squares of all the coefficients for vectors
starting with a given prefix. In particular, for 0 ≤ k ≤ n and α ∈ {0, 1}k denote

Sρ
α(f) =

∑

b∈{0,1}n−k

f̂2(αb)(1− 2ρ)2w(b).

Lemma 11 There exists an SQ–Dρ randomized algorithm P1 that for any target function
f , prefix vector α of length k, confidence δ and accuracy τ , P1(n, k, α, τ, δ) returns, with
probability at least 1 − δ, a value estimating Sρ

α(f) within τ . It runs in O(τ−2 log (1/δ))
time and tolerance of its queries is bounded from below by τ/4.

Proof: Let p = [12 ]k[ρ]n−k and α0 = α[0]n−k. The ability to estimate Sρ
α(f) is based on the

following equation

Sρ
α(f) = Ex∼U

[
Ey∼Dp⊕x [f(y)χα0(x⊕ y)]

]2
.

To prove it denote

fρ
α(x) , Ey∼Dp⊕x [f(y)χα0(x⊕ y)] .

Since by Parseval’s identity for every function f , Ex∼U [f2(x)] =
∑

a∈{0,1}n f̂2(a), it is
enough to prove that

fρ
α(x) =

∑

b∈{0,1}n−k

f̂(αb)(1− 2ρ)w(b)χαb(x) . (3)
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As follows from the definition of p⊕x (see Section 3.2), Dp⊕x(y) = Dp(x⊕y). Thus equation
(3) can be proved as follows

fρ
α(x) = Ey∼Dp⊕x [f(y)χα0(x⊕ y)] =

∑

y∈{0,1}n

f(y)χα0(x⊕ y)Dp⊕x(y)

=
∑

y∈{0,1}n

f(y)χα0(x⊕ y)Dp(x⊕ y)

=
∑

z∈{0,1}n

f(x⊕ z)χα0(z)Dp(z)

= Ez∼Dp [f(x⊕ z)χα0(z)]

= Ez∼Dp


 ∑

a∈{0,1}n

f̂(a)χa(x⊕ z)χα0(z)




= Ez∼Dp


 ∑

a∈{0,1}n

f̂(a)χa(x)χa⊕α0(z)




=
∑

a∈{0,1}n

f̂(a)χa(x)Ez∼Dp [χa⊕α0(z)].

(4)

But since p = [12 ]k[ρ]n−k and α0 = α[0]n−k,

Ez∼Dp [χa⊕α0(z)] =
∏

i∈{1,...,n}

[
1− pi + pi(−1)ai⊕α0,i

]
=

∏

i∈{1,...,n},ai⊕α0,i=1

(1− 2pi)

=


 ∏

i∈{1,...,k},ai 6=αi

0





 ∏

i∈{k+1,...,n},ai=1

(1− 2ρ)


 , (5)

that is, if a = αb then Ez∼Dp [χa⊕α0(z)] = (1 − 2ρ)w(b), otherwise Ez∼Dp [χa⊕α0(z)] = 0.
This result substituted to the last term of equation (4) gives precisely the required identity.

Our goal is to estimate Sρ
α(f) = Ex∼U [(fρ

α(x))2]. By the definition of fρ
α, for every z,

we can estimate fρ
α(z) within τ/4 using statistical query (f(x)χα0(z ⊕ x), τ/4, Dp⊕α0) and

we can assume that the estimate has an absolute value of at most 1. It is easy to see
that the square of this estimate is an estimate for (fρ

α(z))2 within τ/2. Therefore (fρ
α(z))2

is a random variable whose value we are able to estimate within τ/2. Denote it by Y .
By Corollary 3 with Remark 4 we get that the call to AMEAN(Y, τ/2, 1, δ) will give us the
estimate for Sρ

α(f) within τ/2+ τ/2 = τ . Figure 1 summarizes the description of procedure
P1. Since computing the value of Y takes O(1) time, the complexity of the algorithm is
O(τ−2 log (1/δ)). ¤

With algorithm P1 we are now ready to describe the Bounded Sieve. We define c0 ,
−2 log (1− 2ρ) (it is a positive constant).

Theorem 12 There exists an SQ–Dρ randomized algorithm BSρ that for any target concept
f , threshold θ > 0, confidence δ > 0 and degree bound 0 ≤ ` ≤ n, BSρ(n, θ, `, δ) returns,
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Input: Access to STAT (f,Dρ); 0 ≤ k ≤ n; α ∈ {0, 1}k; ` ≤ n; θ > 0; τ > 0; δ > 0
Output: Value v such that, with probability at least 1− δ, |Sρ

α(f)− v| ≤ τ .

1. p ← [12 ]k[ρ]n−k

2. α0 ← α[0]n−k

3. Y ≡ draw z w.r.t. U and compute (STAT(f,Dρ)[f(x)χα0(z ⊕ x), τ/6, Dp⊕α0 ])
2

4. v ← AMEAN(Y, b− a = 1, τ/2, δ)
5. return v

Figure 1: Procedure P1

with probability at least 1− δ, a set with the large Fourier coefficient property for function
f , threshold θ and degree `. Its running time is polynomial in n, 2`, log (1/δ) and θ−1,
particularly Õ(n23c0`θ−6 log (1/δ)). Tolerance of queries is bounded from below by an inverse
of a polynomial in 2` and θ−1, specifically 2−c0`θ2/16.

Proof: If there is at least one coefficient greater than θ with degree lower than ` for the
parity function of vector starting with α then Sρ

α(f) is at least (1−2ρ)2`θ2 = 22 log (1−2ρ)`θ2 =
2−c0`θ2. All the coefficients for the vectors starting with α can be separated into two disjoint
sets—those for the vectors that start with α0 and those for the vectors that start with α1.
With these observations and the procedure P1 for estimating Sρ

α(f) we can write a recursive
subroutine P2 that for every α outputs the set Wα that satisfies the following conditions:

• for all a ∈ Wα,α is a prefix of a;

• for all a ∈ {0, 1}n, if |f̂(a)| ≥ θ and w(a) ≤ ` then a ∈ Wα;

• for all a ∈ Wα, |f̂(a)| ≥ θ/2.

That is, Wα has the large Fourier coefficient property for function f , threshold θ, and degree
`; and is restricted to prefix α.

To find all the required coefficients (i.e., to implement the BSρ) we invoke P2 on the
empty prefix. The implementation of the procedure P2 is given in Figure 2.

If P1 succeeds then P2 is called recursively only when

Sρ
α(f) ≥ (3/4− 1/4)2−c0`θ2 = 2−c0`θ2/2 .

Since
∑

α∈{0,1}k Sρ
α(f) ≤ ∑

a f̂2(a) = 1, P2 will be invoked at most 2 ·2c0`θ−2 times for each
length of α, and therefore there will be at most 2n2c0`θ−2 calls to P1. This means that total
probability of failure of the algorithm is at most 2n2c0`θ−2 · δ2−c0`θ2/(2n) = δ. According
to Lemma 11, each call to P1 in P2 takes

O(22c0`θ−4 log (2n2c0`θ−2δ−1)) = Õ(22c0`θ−4 log (1/δ)) .

This gives a bound on total running time of Õ(n23c0`θ−6 log (1/δ)). By the same lemma,
tolerance of all the queries is bounded from below by 2−c0`θ2/16. It is important to note
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Input: Access to STAT(f,Dρ); 0 ≤ k ≤ n; α ∈ {0, 1}k; ` ≤ n; θ > 0; δ > 0
Output: The set Wα that, with probability at least 1− δ, has the large Fourier coefficient
property for function f , threshold θ and degree `; and is restricted to prefix α.

1. if k = n then
2. v ← STAT(f,Dρ)[fχα, θ/4, U ]
3. if v ≥ 3

4θ then output(α)
4. else
5. b ← 2−c0`θ2

6. s ← P1(n, α, b/4, δb/(2n))
7. if s ≥ 3b/4 then
8. P2(k + 1, α0, `, θ, δ)
9. P2(k + 1, α1, `, θ, δ)

10. endif
11. endif

Figure 2: Procedure P2

that if the estimations fail the running time of the algorithm may exceed this bound. This
can be easily prevented by adding a time counter that terminates the execution of the al-
gorithm whenever it exceeds this time bound. ¤

In our future applications we will need to find the Fourier coefficients not only of a
Boolean target f but also of any real-valued function involving f(x). Thus we extend the
BS algorithm as follows.

Theorem 13 Let φ : {0, 1}n × {−1, 1} → [−β, β] be any real-valued function (β > 0).
There exists an SQ–Dρ randomized algorithm RV-BSρ that for every target concept f , positive
threshold θ, confidence δ > 0 and degree bound 0 ≤ ` ≤ n RV-BSρ(n, φ, β, θ, `, δ) returns,
with probability at least 1−δ, a set with the large Fourier coefficient property for function φ,
threshold θ and degree `. It runs in Õ(n23c0`θ−6β2 log (1/δ)) time and tolerance of queries
is bounded from below by Ω̃(β−22−c0`θ2). Complexity of query functions is bounded by
O(τ) + O(n), where τ is the complexity of computation of φ.

Proof: Let us look back into the proof of Theorem 12. Its idea is obviously applicable in
the new setting. All we have to check is the details of the implementation. Let us substitute
π(x) , φ(x, f(x)) for f(x) in all the places in the proof. In the second line of P2 we need an
estimate of φ̂f (α). This cannot be done using one statistical query but instead we can use
the procedure RV-SQ(STAT(f, U), φχα(x), θ/4). Now, given that P1 will estimate correctly
Sρ

α(π), the algorithm will work correctly. The only thing that will change is the bound on
the number of calls to P2 since it is based on the fact that: E[f2] = 1. Now we have that:
E[π2] ≤ L2∞(π) ≤ β2 and hence P2 will be invoked at most β22n2c0`θ−2 times. Due to
the increase in the number of calls to P1 the confidence of each call has to be increased (it
has to be divided by β2). Now we should get a modified version of P1 that will produce
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estimations of Sρ
α(π). If we substitute π for f in Lemma 11 we see that all the properties

will hold but now the estimation of πρ
α(z) = Ex∼Dp⊕z [π(x)χα0(z ⊕ x)] (line 3 in P1 cannot

be done using one query. Moreover, since we want (πρ
α(z))2 to be approximated within τ/2,

πρ
α(z) has to be approximated within τ

4|πρ
α(z)| . Since

|πρ
α(z)| ≤ Ex∼Dp⊕z [|π(x)χα0(z ⊕ y)|] ≤ L∞(φ) ≤ β

it will suffice to approximate πρ
α(z) within τ ′ = τ

4β . To make this approximation we call

RV-SQ(STAT(f, Dp⊕z), φ(x, f(x))χα0(z ⊕ x), β, τ ′) .

By Lemma 5, we get the required value. The time complexity of the call to RV-SQ is
O(log (β/τ ′)) = O(log (β/τ)). The required tolerance is at least τ ′

4β log (β/τ ′) = Ω̃( τ
β2 ). Com-

plexity of the query functions is the complexity of computation of φ plus O(n). These
new bounds on the complexity of P1 render the total running time of the algorithm to be
Õ(n23c0`θ−6β2 log (1/δ)). The required tolerance is Ω̃(β−22−c0`θ2). Thus all the bounds
satisfy the required conditions. ¤

3.4 Learning Decision Trees

Below we give the first application of the BSρ algorithm. We prove that the representation
class of decision trees is learnable in the SQ–Dρ model. For this and further applications
we take ρ = 1

4 . This makes c0 = 2 log (1− 2ρ) to be 2. Our idea is to show that in order
to learn DT it is sufficient to consider only “large” Fourier coefficients of “low” degree (we
add a restriction on degree over the original proof by Kushilevitz and Mansour). To achieve
this we rely on several well-known properties of Fourier transform of decision trees. The
properties are described in the following lemmas (we provide their proofs for completeness).

Lemma 14 Let T be a decision tree of depth d. All the Fourier coefficients of T of degree
larger than d are 0 and all the non-zero coefficients of T are larger than 2−d.

Proof: We start by examining the Fourier transform of a single term. Let t be a term of
length l and let i1, . . . , il be the indices of variables appearing as literals in t. For every
1 ≤ j ≤ l let bj be 1 if xij appears negated in t and 0 otherwise. Let t+ = t+1

2 (the {0, 1}
version of term t). It is easy to verify that

t+ =
l∏

j=1

(
1 + (−1)bjχ{ij}

2

)
(6)

For every two disjoint sets of indices A and B, χAχB = χA∪B. Thus by developing the
equation (6) we obtain that all the non-zero Fourier coefficients of t+ are for sets not larger
than l and are by their absolute value equal to 2−l.

Let m be the number of leaves labelled by 1 in T and t1, . . . , tm be the terms corre-
sponding to each of these leaves. Let T+, t+1 , . . . , t+m be {0, 1} versions of the decision tree
and the terms. Every input value satisfies at most one term of T and thus T+ =

∑m
i=1 t+i ,
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that is, every Fourier coefficient of T+ is a sum of corresponding Fourier coefficients of
terms t+1 , . . . , t+m. Length of every term ti is at most d and thus all the non-zero Fourier
coefficients of T+ are for sets not larger than d and their absolute value is greater or equal
to 2−d. By the definition of T+, T = 2T+ − 1 and therefore the above property of the
Fourier transform of T+ holds for T as well. ¤

The size of decision tree is the number of leaves in it. Let DT-size(f) denote the size of
a minimal DT representation of f .

Lemma 15 Let T be a decision tree of size m. There exists a function h such that all the
Fourier coefficients of h of degree larger than t are 0, where t = log (4m/τ), all non-zero
coefficients of h are larger than τ/(4m) and E[(T − h)2] ≤ τ .

Proof: Let h be the decision tree that results from truncating T at depth t. At the trun-
cated places we add a leaf with value 1. The probability that uniformly chosen assignment
will reach some specific leaf at depth greater or equal to t is at most 2−t. Therefore the
probability of reaching one of the leaves we added (instead of the truncated parts) is at
most m2−t = τ/4, therefore PrU [T 6= h] ≤ τ/4. For Boolean functions h and T this implies
that

EU [(T − h)2] = 4 PrU [T 6= h] ≤ τ .

By Lemma 14, we get that the Fourier transform of h has the required properties.
We are now ready to prove that BS can be used to learn DT.

Theorem 16 There exists an SQ–D 1
4

randomized algorithm DT-learn such that for any
target concept f , s = DT-size(f), ε > 0 and δ > 0, DT-learn(n, s, ε, δ) returns, with proba-
bility at least 1− δ, an ε–approximation of f . The algorithm runs in Õ(ns12ε−12 log (1/δ))
time. Tolerance of its queries is Ω(ε4s−4).

Proof: Given its input DT-learn gets H = BS 1
4
(n, ε

8s , log 8s
ε , δ). Denote g =

∑
a∈H f̃(a),

where f̃(a) is an estimate of f̂(a) satisfying |f̃(a)− f̂(a)| ≤ √
ε
2

ε
16s (such an estimate can be

obtained using query (fχa,
√

ε
2

ε
2s , U)). Then the algorithm returns h = sign(g). We need

to prove that (given that BS succeeds) h calculated in this fashion is an ε−approximation
of f . By Fact 6, Pr[h 6= f ] ≤ E[(f − g)2], thus it is sufficient to prove that

E[(f − g)2] =
∑

a∈{0,1}n

(f̂(a)− ĝ(a))2 ≤ ε .

Denote
V = {a | f̂(a) ≤ ε

8s
∨ w(a) ≥ 8s

ε
} .

Clearly, H ∪ V = {0, 1}n. Thus

Pr[h 6= f ] ≤ E[(f − g)2] =
∑

a∈{0,1}n

(f̂(a)− ĝ(a))2 =

∑

a∈H

(f̂(a)− f̃(a))2 +
∑

a 6∈H

f̂2(a) ≤
∑

a∈H

(f̂(a)− f̃(a))2 +
∑

a∈V

f̂2(a) (7)
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Since every coefficient in H is at least ε
16s , |H| is at most (16s

ε )2 and therefore the defined
g satisfies : ∑

a∈H

(f̂(a)− ĝ(a))2 =
∑

a∈H

(f̂(a)− f̃(a))2 ≤ ε/2 ,

that is, the first term of equation (7) is at most ε/2. As is proved in Lemma 15 (for m = s
and τ = ε/2), there exists a function f ′ such that all the Fourier coefficients of f ′ for vectors
in V are 0 and E[(f − f ′)2] ≤ ε/2. That is,

ε/2 ≥ E[(f − f ′)2] =
∑

a∈{0,1}n

(f̂(a)− f̂ ′(a))2 ≥
∑

a∈V

f̂2(a) .

Altogether, Pr[h 6= f ] ≤ ε. By properties of BS 1
4

(see Theorem 12), the running time of the

algorithm is Õ(ns12ε−12 log (1/δ)) and tolerance of its queries is Ω(ε4s−4). ¤

Remark 17 It can be easily seen that the size parameter is used only for “bounding” pur-
poses and therefore if the parameter is not supplied to DT-learn we can use the standard
guess-and-double technique instead. This remark is applicable to the rest of our algorithms
as well.

3.5 Weak DNF Learning

Another simple application of the Bounded Sieve algorithm is weak DNF learning in SQ–
D 1

4
. It is based on the fact that every DNF expression has a “large” Fourier coefficient of

“low” degree [BFJ+94; Ja97]. Below we prove a generalization of this fact that will also be
required for our future application. Let DNF-size(f) denote the size (number of terms) of
a minimal DNF representation of f .

Lemma 18 Let f be a Boolean function, s = DNF-size(f) and D be a distribution over X.
There exists a parity function χa such that ED[fχa] ≥ 1

2s+1 and w(a) ≤ log ((2s + 1)L∞(2nD)).

Proof: As it was proved by Jackson [Ja97, Fact 8], there exists a parity function χa such
that ED[fχa] ≥ 1

2s+1 . Let A = {i | ai = 1}. As it can be seen from the proof of the fact,
A ⊆ T , where T is a term of f (a set of literals and a Boolean function it represents) and
PrD[T = 1] ≥ 1

2s+1 . On the other hand,

PrD[T = 1] =
∑

x,T (x)=1

D(x) < 2−|T |2nL∞(D) .

Thus
w(a) = |A| ≤ |T | ≤ log ((2s + 1)L∞(2nD)) .

¤

Theorem 19 There exists an SQ–D 1
4

randomized algorithm UWDNF such that for any target
concept f , s = DNF-size(f), ε > 0 and δ ≥ 0, UWDNF(n, s, δ) returns, with probability at
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least 1 − δ, a (1
2 − 1

4s+4)–approximation to f . The algorithm runs in Õ(ns12 log (1/δ))
time. Tolerance of its queries is Ω(s−4). The weak hypothesis is a parity function (possibly
negated).

Proof: By Lemma 18, a call to BS 1
4
(n, θ = 1

2s+1 , ` = log (2s + 1), δ) returns, with
probability at least 1− δ, a set containing at least one vector. We estimate every coefficient
in the returned set with tolerance r = 1

(2s+1)(2s+2) and choose the vector with the maximal
Fourier coefficient (it will be larger than 1

2s+1 − r = 1
2s+2). Parity function for this vector

(or its negation) will give a (1
2 − 1

4s+4)–approximation to the target. By Theorem 12 the
running time of this invocation will be Õ(ns12 log (1/δ)) and tolerance of queries is Ω(s−4).

3.6 Boosting the Weak DNF Learner

Certainly, the next interesting question is whether we can strongly learn DNF in SQ–D 1
4
. We

answer this question positively by following the way used by Jackson in his proof of DNF
learnability. The proof consists of two components. The first one is weak DNF learning
with respect to any given distribution (although efficient only on distributions that are
polynomially close to uniform). The second one is Freund’s boosting technique that boosts
the weak learner to a strong learner.

First we present the required weak learner.

Theorem 20 Let f be a Boolean function, s = DNF-size(f) and let Df be a computable
probability distribution over the sample space. The computation of Df (x) may involve the
value of f(x). There exists a randomized SQ–D 1

4
algorithm WDNF 1

4
such that for the target

function f , confidence δ > 0 and β that bounds L∞(2nDf ), WDNF 1
4
(n, s, Df , β, δ) finds,

with probability at least 1 − δ, a Boolean function h that (1
2 − 1

4s+4)–approximates f . The
algorithm runs in Õ(nβ8s12 log (1/δ)) time. The tolerance of its queries is lower bounded
by Ω̃(β−4s−4). Complexity of its query functions is the time complexity of Df plus O(n).
The weak hypothesis is a parity function(possibly negated).

Proof: As is proved in Lemma, 18 for every DNF expression f , there exists a parity function
χb such that |EDf

[fχb]| ≥ 1
2s+1 and

w(b) ≤ log ((2s + 1)L∞(2nDf )) ≤ log ((2s + 1)β) .

EDf
[fχb] = EU [2nDffχb] thus in order to find a parity function that weakly approximates

f with respect to Df we can find the “large” Fourier coefficients of function 2nDff . This
means that by invoking

RV-BS 1
4
(n, φ = 2nDff, β, θ =

1
2s + 1

, ` = log ((2s + 1)β), δ)

and then proceeding as in UWDNF we can find the required weak approximator. By Theorem
13, we get that all the complexities are as stated. ¤

The next step is adapting Freund’s boosting technique to the SQ–Dρ model. The main
advantage of Freund’s booster F1 utilized by Jackson is that it requires only weak learning
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with respect to polynomially computable distributions that are polynomially close to the
uniform distribution (i.e., L∞(2nD) ≤ p(n, s, ε) for some polynomial p). Freund’s boosting
algorithm is not the only boosting algorithm possessing this advantage and is not the most
efficient one (see discussion below). But its presentation is relatively simple and is sufficient
for demonstrating the idea of adaptation.

Below we are going to give a brief account of Freund’s boosting technique [Fr90] and in
particular his F1 algorithm for the PAC learning model with respect to distribution D.

As input, F1 is given positive ε, δ, and γ, a weak learner WL that produces (1
2 −

γ)–approximate hypotheses for functions in a function class F , and an example oracle
EX(f, D) for some f ∈ F . The WL is assumed to take the example oracle for some
distribution D′ and confidence parameter δ′ as inputs and produce (1

2 − γ)–approximate
hypothesis with probability at least 1−δ′. Given these inputs, F1 steps sequentially through
k stages (k is given in Figure 3). At each stage i, 0 ≤ i ≤ k − 1 F1 generates distribution
function Di, runs WL on simulated oracle EX(f,Di) and (with high probability) gets a
(1
2 − γ)–approximate hypothesis wi. Simulation of the example oracle is done by filtering.

Probability of acceptance of the next example is estimated before the simulation (to Eα).
If the probability is “too low” the algorithm does not produce any more weak hypotheses.
Finally, F1 generates its hypothesis using majority function MAJ of all the wi it has received.

In Figure 3 we give the original implementation of Freund’s boosting algorithm F1.

Theorem 21 DNF is strongly learnable in the SQ–Dρ model.

Proof: The first and simple step towards the adaptation of Freund’s algorithm to SQ–D 1
4

is estimation of Eα using the procedure RV-SQ instead AMEAN (since we do not have access
to EX(f, D)). This is possible since the value of αi

ri(x) can be found using f(x) and previous
hypotheses. Next, we show how to provide our weak learner with distribution Di. By the

definition, Di(x) ≡ D(x)αi
ri(x)P

y D(y)αi
ri(y)

. It is easy to see that given f(x) the value of D(x)αi
ri(x) can

be evaluated straightforwardly. On the other hand, the value of
∑

y D(y)αi
ri(y) (independent

of x), which is the probability of accepting a sample from D, cannot be computed exactly.
Instead, we can estimate this value. In fact, we already have the estimate: the value Eα used
for termination condition (lines 12–14). The condition ensures that Eα ≥ 2

3θ (otherwise we
terminate) and Eα is an estimate of

∑
y D(y)αi

ri(y) within 1/3θ (line 11). Thus

1/2Eα ≤
∑

y

D(y)αi
ri(y) ≤ 3/2Eα .

This means that if we define D′
i(x) ≡ U(x)αi

ri(x)/Eα then we get that there is a constant
ci ∈ [1/2, 3/2] such that for all x, D′

i(x) = ciDi(x). Now consider the functional impact
of supplying this approximate distribution rather than true distribution to WDNF 1

4
. WDNF 1

4

uses its given distribution for exactly one purpose: to find the “large” Fourier coefficients of
function 2nDff . Since the Fourier transform is a linear operator (i.e., ĉg(a) = cĝ(a)) we can
be certain that 2nD′

if has a Fourier coefficient with absolute value of at least ci
1

2s+1 ≥ 1
4s+2 .

Moreover, since the largest Fourier coefficient of 2nD′
if corresponds to the largest Fourier

coefficient of 2nDif , the parity function corresponding to that coefficient (or its negation)
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Input: Example oracle EX(f,D) ; 0 < γ ≤ 1
2 ; (1

2 − γ)–approximate weak learner
WL(EX, δ) which succeeds with probability at least 1− δ; ε > 0; δ > 0
Output: h such that, with probability at least 1− δ, PrD[f = h] ≥ 1− ε

1. γ̂ ≡ min (γ, 0.39)
2. k ← 1

2γ−2 ln (4/ε)
3. w0 ← WL(EX(f,D), δ/2k)
4. for i ← 1, . . . , k − 1 do
5. ri(x) ≡ |{0 ≤ j < i|wj(x) = f(x)}|
6. B(j; n, p) ≡ (

n
j

)
pj(1− p)n−j

7. α̃i
r ≡ B(bk/2c − r; k − i− 1, 1/2 + γ̂) if i− k/2 < r ≤ k/2, α̃i

r ≡ 0 otherwise
8. αi

r ≡ α̃i
r/maxr′=0,...,i−1{α̃i

r′}
9. θ ≡ ε3/57

10. Y ≡draw example 〈x, f(x)〉 from EX(f,D) and compute αi
ri(x)

11. Eα ← AMEAN(Y, b− a = 1, 1
3θ, δ

2k )
12. if Eα ≤ 2

3θ then
13. k ← i
14. break do
15. endif
16. Di(x) ≡ D(x)αi

ri(x)P
y D(y)αi

ri(y)

17. wi ← WL(EX(f,Di), δ
2k )

18. enddo
19. h(x) ≡ MAJ(w0(x), w1(x), ..., wk−1(x)
20. return h

Figure 3: Freund’s algorithm for boosting a weak learner in the PAC model. EX(Di, f) is
a simulated example oracle.

382



On Using Extended Statistical Queries to Avoid Membership Queries

(1
2 − 1

4s+2)–approximates target function with respect to Di. Thus by slightly modifying 7

WDNF 1
4

we can handle this problem. These modifications may increase the running time of
weak learner only by a small constant and thus do not affect our analysis.

Input: Access to STAT (f,D 1
4
); s = DNF-size(f); ε > 0; δ > 0

Output: h such that, with probability at least 1− δ, PrU [f = h] ≥ 1− ε

1. γ ← 1
4s+4 ;

2. k ← 1
2γ−2 ln (4/ε)

3. w0 ←UWDNF 1
4
(n, s, δ/k)

4. for i ← 1, . . . , k − 1 do
5. ri(x) ≡ |{0 ≤ j < i|wj(x) = f(x)}|
6. B(j; n, p) ≡ (

n
j

)
pj(1− p)n−j

7. α̃i
r ≡ B(bk/2c − r; k − i− 1, 1/2 + γ̂) if i− k/2 < r ≤ k/2, α̃i

r ≡ 0 otherwise
8. αi

r ≡ α̃i
r/maxr′=0,...,i−1{α̃i

r′}
9. θ ← ε3/57

10. Eα ←RV-SQ(STAT(f, U), αi
ri(x), 1, θ/3)

11. if Eα ≤ 2
3θ then

12. k ← i

13. break do
14. endif
15. D′

i(x) ≡ U(x)αi
ri(x)/Eα

16. wi ←WDNF 1
4
(n, s,D′

i, 3/(2θ), δ/k)

17. enddo
18. h(x) ≡ MAJ(w0(x), w1(x), ..., wk−1(x))
19. return h

Figure 4: Learning DNF in the SQ–D 1
4

model

In Figure 4 we give a straightforward implementation of the discussed adaptation.
Our last concern is the complexity of this algorithm. The total number of phases

executed will be O(s2 log ε−1). Clearly the “heaviest” part of each phase is the execu-
tion of the weak learner. By Theorem 20, the running time of each call to WDNF 1

4
is

Õ(ns12ε−24 log (1/δ)). Thus the total running time of the algorithm is Õ(ns14ε−24 log (1/δ)).
The tolerance of queries is Ω̃(s−4ε12). The complexity of query functions is as complexity
of evaluation of αi

ri(x) plus O(n). All the O(k2) = Õ(s4) possible values of αi
ri(x) can be

evaluated in advance, that is complexity of query functions will be O(n). ¤

The adaptation of boosting algorithm that we obtained is not suitable for boosting weak
learners which will fail when supplied with distributions D′

i as above instead of Di. Except

7. Lower bound θ has to be modified to 1
4s+2

.
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for this limitation we, in fact, described the general way to boost weak learners in the SQ–D
model.

Recently, two new boosting algorithms have appeared that use only distributions that
are polynomially close to the uniform. The first one is by Klivans and Servedio [KS99]
and the second one is by Bshouty and Gavinsky [BG01]. Distributions produced by these
boosting algorithms are optimally “flat”, that is, the L∞ norm of distributions they produce
is Õ(ε)2−n. They also require the same order of phases as F1. Both algorithms are more
complicated than F1, but nevertheless can be adapted to SQ–D in a very similar way.
These algorithms were used to improve the running time of Jackson’s original algorithm
and can be substituted for F1 in our algorithm as well. This would significantly decrease
the dependence on ε. In particular, L∞(Di) = Õ(ε−1) and k = O(γ−2 log (1/ε)) gives the
running time of Õ(ns14ε−8 log (1/δ)) and tolerance becomes lower-bounded by Ω̃(s−4ε4).

4. Learning with Attribute Noise in Membership Queries

We now turn our attention to another type of noise in membership queries: the noise that
corrupts the attributes of a sample point. That is, as an answer to a membership query
at point x the learner gets the value of f(x′), where x′ might differ from x. This type of
noise was previously considered as appearing in the example oracle EX(f, D), that is the
learner gets random labelled samples (x, f(x′)) [SV88; GS95; BJT99]. We define the noise
model formally and then focus our attention on the product attribute noise with known
noise rate (which is the most commonly referred type of attribute noise). We prove that
membership queries corrupted by such a noise are weaker than extended statistical queries
discussed in the previous chapter. Nevertheless, the Bounded Sieve can be implemented in
this model. This implies that DT is learnable and DNF is weakly learnable in this “weak”
model. We prove that these learning results can also be achieved for the uniform product
attribute noise of unknown rate.

4.1 The Noise Model and Its Properties

The attribute noise is usually described as returning the value f(x⊕ b) where b is sampled
randomly with respect to some noise distribution D′. The simplest and the most well
studied noise distribution is the product distribution, i.e., independence of all the attributes
is assumed.8 If every attribute is changed with the same probability the noise is called
uniform. The resulting model represents the situation in which the learner cannot ask the
membership query in the desired point since the attributes it supplies change their state
randomly and independently in the process of the query. Examples of situations of this
kind are:

• sending the point x to the oracle via a faulty communication channel9

• “material” representing the attributes is unstable.

8. This assumption certainly agrees with assumptions of learning with respect to the uniform.
9. For this case the attribute noise is uniform and random classification noise has to be added if the answer

is also sent via a faulty channel.

384



On Using Extended Statistical Queries to Avoid Membership Queries

Formally, the noise model is defined in the following way. For a constant probability
vector p ∈ (0, 1)n and Dp the product distribution defined by p, we define noisy membership
oracle MEMp(f) as follows. For a query x, MEMp(f) chooses randomly (and independently
of any previous queries) b according to the distribution Dp and returns f(x ⊕ b). We can
assume that for all i, pi ≤ 1/2 since inverting the i-th attribute of the query is equivalent
to changing pi to 1− pi.

We may also add classification noise to the oracle and define MEMp,η(f). This classi-
fication noise does not have to be persistent as the learner cannot get a label of the same
point twice (with any non-negligible probability).

The use of membership queries with product attribute noise can be related to the SQ–Dρ

model in the following way.

Theorem 22 For p ∈ [ρ, 1/2]n MEMp can be efficiently simulated in SQ–Dρ.

Proof: The result of query at point x to oracle MEMp is a Bernoulli random variable
(or a coin flip) such that e ∈ {1,−1} is returned with probability Pry∼Dp [f(x ⊕ y) = e].
Given these probabilities for every x, MEMp can be replaced by an appropriate coin flip.
Moreover, the exact values of probabilities are not required, since the ability to approximate
them efficiently will suffice to simulate the MEMp oracle. But

Pry∼Dp [f(x⊕ y) = e] = Pry∼Dp⊕x [f(y) = e] ,

i.e., this probability can be estimated in SQ–D whenever Dp⊕x ∈ D. Thus for D =
{Dp⊕x | x ∈ {0, 1}n} MEMp can be simulated in SQ–D. Such D is included in the class of
probability distributions which for every i, gives a learning algorithm a degree of control pi

over attribute i (see Remark 10 for details about the definition). For every i, pi ∈ [ρ, 1/2]
and thus by Lemma 9 and Remark 10, MEMp can be simulated in SQ–Dρ. ¤

4.2 Offsetting Attribute Noise in the Bounded Sieve

Let τ > 0 be a constant and p ∈ [0, 1/2− τ ]n be a probability vector. We are now going to
show that we can implement the Bounded Sieve using access to MEMp oracle (we call the
resulting algorithm AN-BS where AN stands for attribute noise).

Theorem 23 There exists a randomized algorithm AN-BS that for any target concept f ,
threshold θ > 0 , degree bound 0 ≤ ` ≤ n, confidence δ > 0 and probability vector p (with
restrictions as above), AN-BS(MEMp, n, θ, `, δ, p) returns, with probability at least 1 − δ, a
set with the large Fourier coefficient property for function f , threshold θ and degree `. Its
running time is polynomial in n, θ−1, 2` and log (1/δ).

Proof: A query to the oracle MEMp(f) at point y returns f(y ⊕ b) where b is chosen
randomly according to the distribution Dp. Thus by Hoeffding’s formula we can efficiently
approximate fp(y) , Eb∼Dpf(y⊕ b). Obviously, for every x, |fp(x)| ≤ 1 and thus ‖fp‖ ≤ 1.
Now, by using the real-valued version of the KM algorithm (see Remark 7 in Section 2.5) we
can find a set with the large Fourier coefficients property for function fp and threshold ϑ
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in time polynomial in n, ϑ−1 and log (1/δ). But

fp(y) = Eb∼Dp [f(y⊕b)] =
∑

a∈{0,1}n

f̂(a)Eb∼Dp [χa(y⊕b)] =
∑

a∈{0,1}n

(
f̂(a)Eb∼Dp [χa(b)]

)
χa(y),

i.e., we have that for all a, f̂p(a) = f̂(a)Eb∼Dpχa(b). We can easily calculate the value
ca , Eb∼Dpχa(b) =

∏
ai=1(1− 2pi). By the properties of p, |ca| ≥ (2τ)w(a). Thus if we run

the above algorithm for the threshold ϑ = (2τ)`θ we will get the set S′ that includes a set
with the large Fourier coefficient property for the function f and threshold θ. Size of S′ is
bounded by (2τ)−2`θ−2. In order to estimate the values of the coefficient f̂(a) with accuracy
σ we estimate the coefficient f̂p(a) with accuracy σca ≥ (2τ)`σ and return c−1

a f̂p(a). Thus
we can refine the set S′ and return a set with the large Fourier coefficient property for the
function f , threshold θ and degree `. All the parts of the described algorithm run in time
polynomial in n, (2τ)−`θ−1 and log (1/δ), that is, for a constant τ the time is polynomial in
n, θ−1, 2`, and log (1/δ) ¤

Remark 24 It is easy to note that knowing the noise rates exactly is not necessary. That
is, the result will hold when the learning algorithm is supplied with “good” estimates of the
noise rates. Particularly, estimates within inverse of a polynomial (in learning parameters)
will suffice.

Remark 25 When using MEMp,η(f) oracle instead of MEMp(f) in the above algorithm we
can immediately offset the classification noise by using the fact: fp,η(y) = (1 − 2η)fp(y),
where fp,η(y) is the expectation of the query in point y to the oracle MEMp,η(f). This will
require increasing the accuracy of the estimation by 1

1−2η and make the running time of the
algorithm polynomially dependent on 1

1−2η .

By sole use of AN-BS we can efficiently learn DT and weakly learn DNF as described in
Theorems 16 and 19.

4.3 Coping with Attribute Noise of Unknown Rate

As was shown by Goldman and Sloan [GS95], coping with attribute noise becomes much
more difficult when the noise rates are unknown.10 The reason for this is that the usual
way of handling the unknown noise rate—choosing the hypotheses with the minimum dis-
agreement on samples—does not work for this type of noise. Nevertheless, several simple
classes (e.g., k−DNF and monomials) are learnable when the attribute noise is uniform
[GS95; DG95]. The following two theorems show that our learnability results hold in this
setting as well.

Theorem 26 DT is learnable by membership queries with uniform attribute noise of fixed
unknown rate ν < 1/2.

10. In fact, no PAC learning algorithm exists that can tolerate a noise rate higher than 2ε, where ε is the
required accuracy parameter.
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Sketch of proof: Learning algorithm has access to MEMp oracle for p = [ν]n. For the
ease of presentation let us assume that all estimations we do by sampling produce the exact
result. In particular, our AN-BS algorithm returns all the vectors with Fourier coefficients
larger than the bound that was given to it(and only them) and we can estimate exactly
coefficients of the function fp defined in the proof of Theorem 23. For positive ν ′ < 1/2 we
look at the execution of AN-BS for learning DT supplied with noise rate ν ′ (equal for all the
attributes) instead of the actual noise rate, i.e.,

AN-BS(δ,MEMp, n,
ε

8s
, log

8s

ε
, [ν ′]n)

We then find all the Fourier coefficients for returned vectors and offset the effect of noise
by multiplying every coefficient f̂p(a) by (1− 2ν ′)−w(a) (as if ν ′ is a correct noise rate). We
denote the function defined by coefficients we have found by fp

ν′ (with the assumptions we
made this function is well-defined). If ν ′ = ν then the algorithm we have just described will
find all the required vectors and calculate their Fourier coefficients correctly. Thus, as follows
from Lemma 15, 1− ε < ‖fp

ν ‖2 ≤ 1. It is easy to note that the larger the supplied noise rate
ν ′ is, the more vectors the execution of AN-BS returns (since the threshold gets lower) and
the larger is the value by which we multiply every Fourier coefficient of fp that was found
by AN-BS. That is, for every a ∈ {0, 1}n, |f̂p

ν′(a)| and ‖fp
ν′‖2 are monotonous in ν ′. Thus by

using a binary search we can efficiently find a value ν ′ for which 1− ε ≤ ‖fp
ν′‖2 ≤ 1 + ε (∗)

(the search will be efficient since values which are “close” to ν will satisfy this criterion).
Denote the value we have found by ν1. As we have noted, for every vector a, |f̂p

ν′(a)| is
monotonous in ν ′ thus the criterion (∗) that ν1 satisfies ensures that

∣∣‖fp
ν ‖2 − ‖fp

ν′‖2
∣∣ =

∣∣∣∣∣
∑

a

(
f̂p

ν
2
(a)− f̂p

ν′
2
(a)

)∣∣∣∣∣ ≤ 2ε (8)

On the other hand, as it was shown in the proof of Theorem 16, sign(fp
ν ) ε–approximates f

and therefore ∑
a

(
f̂p

ν (a)− f̂(a)
)2
≤ ε (9)

By combining equations 8 and 9 we can easily obtain that

∑
a

(
f̂p

ν1(a)− f̂(a)
)2
≤ 3ε (10)

That is, sign(fp
ν1) 3ε–approximates f . ¤

Remark 27 Without the “exactness” assumption we made in this proof we will need to
improve the tolerance of all the queries so that the overall error in computation of fp

ν′ be
smaller than ε/8 (and substitute ε/4 for ε in other bounds).

Theorem 28 DNF is weakly learnable by membership queries with uniform attribute noise
of fixed unknown rate ν < 1/2.
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Sketch of proof: We define fp
ν′ as in the previous proof. We denote by λ(ν ′) the absolute

value of the maximal Fourier coefficient of fp
ν′ and by α(ν ′) its corresponding vector. It is

easy to see that λ(ν ′) is monotonous in ν ′ (by the same argument as in the previous proof).
It is also given by the properties of DNF expressions that λ(ν) ≥ 1

2s+1 , where s is number
of terms in the target function. Thus we can find the minimal ν ′ for which λ(ν ′) ≥ 1

2s+1
(as usual, an estimate for this value is sufficient). We denote this error rate by νm. By the
definition of νm, ν ≥ νm and therefore

λ(ν) = |f̂(α(νm))| ≥ λ(νm) ≥ 1
2s + 1

,

i.e., χα(νm) (or its negation) (1
2 − 1

4s+2)–approximates the target. ¤

Remark 29 Both algorithms provided above can also be modified to tolerate the classifica-
tion noise of the same (unknown) rate ν.

5. Limitations of the SQ-D Model

So far we have been showing, so called, positive results about the models that we have
introduced. The other side of understanding a model is proving that certain classes are not
learnable in the model (or so called negative results). Non-trivial results of this kind are
usually very hard to achieve. Fortunately for us, the statistical query model is the most
tractable (non-trivial) learning model. In this chapter we extend this “tractability” to the
SQ–D model. This will be done by showing a new and simple way to characterize weakly
SQ–learnable concept classes. This characterization will then be extended to SQ–D and
applied to classes of parity functions.

5.1 Properties of Statistical Queries

We start by showing a simple property of statistical queries which simplifies the analysis
of the SQ model. According to the definition of statistical query, the query function ψ is a
Boolean function of two parameters. The first one is denoted by x and the second one is
denoted by f(x) according to the values substituted when estimating the expectation of the
query function. We distinguish two types of statistical queries (either regular or extended)
based on their query function. We say that a query is independent of the target if it is
based on ψ which is a function of x alone (and does not depend on the value of the second
parameter – f(x)) and we say that a query is correlational if φ(x, f(x)) ≡ g(x)f(x) for a
Boolean function g(x).

Lemma 30 Any statistical query (regular or extended) can be substituted by two statistical
queries that are independent of the target and two correlational queries.11

Proof: We denote the distribution of the query by D. The following equation proves the
statement:

ED[ψ(x, f(x))] = ED

[
ψ(x,−1)

1− f(x)
2

+ ψ(x, 1)
1 + f(x)

2

]
=

11. This decomposition appears implicitly in [BFJ+94].
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1
2
ED[ψ(x, 1)f(x)]− 1

2
ED[ψ(x,−1)f(x)] +

1
2
ED[ψ(x, 1)] +

1
2
ED[ψ(x,−1)] .

¤

A query that is independent of the target is estimation of the expectation of random
variable which is independent of f and therefore such a query can be substituted by a call
to procedure AMEAN (we assume that the learning algorithm is able to sample randomly with
respect to the distribution of the query). Thus we may assume that learning algorithms in
the statistical query based models use only the correlational statistical queries.

5.2 The Characterization

We are now going to present the characterization of classes weakly learnable in statistical
query based models. Let F be the concept class and A be an algorithm that weakly learns
F in the SQ model (and uses only correlational queries). The characterization is based
on the following observation: for every (but, probably, one) function in F there exists a
correlational query for which A gets a reply which differs “noticeably” from 0. This is true
because there could not exist two different functions in F for which the results of all the
queries are “almost” equal. For every f ∈ F denote by gf the function for which |ED[fgf ]|
differs “noticeably” from 0, that is, gf (or its negation) weakly approximates f . This means
that the set of queries of A weakly “approximates” all (but, probably, one) functions in
F . This argument is formalized in the following way. Let V and W be sets of Boolean
functions. We say that W ε–approximates V with respect to distribution D if for every
f ∈ V there exists g ∈ W such that g ε–approximates f with respect to distribution D. For
a concept class F denote by Fs the set of all the functions in F of size s.

Theorem 31 Let F be a concept class weakly SQ–learnable with respect to D, particu-
larly, there exists an algorithm A that for every f ∈ Fs, uses at most p(n, s) queries of
tolerance lower-bounded by 1

r(n,s) to produce (1
2 − 1

q(n,s))–approximation to f . Let r′(n, s) ,
max{2r(n, s), q(n, s)}. There exists a collection of sets {Wi}∞i=1 such that |Ws| ≤ p(n, s)+1
and Ws (1

2 − 1
r′(n,s))–approximates Fs with respect to D.

Proof: According to the above discussion, we may assume that A uses only correlational
queries. We build the set Ws as follows. We simulate algorithm A(n, s) and for every query
(fgi, ρ) we add gi to Ws and return the value 0 as a result of the query. We continue
the simulation till it violates any of the complexity bounds of A or A stops and returns
final hypothesis h. In the later case we also add h to Ws. First, by the definition of Ws,
|Ws| ≤ p(n, s) + 1. Now, assume that Ws does not (1

2 − 1
r′(n,s))–approximate Fs, i.e., there

exists f ∈ Fs such that for every g ∈ Ws, |ED[fg]| < 2
r′(n,s) . This means that in our

simulation for building Ws, zeros that we gave as answers are valid answers to the queries.
Therefore, by the definition of A, it returns hypothesis h that (1

2 − 1
q(n,s))–approximates f ,

that is, h ∈ Ws. This contradicts the assumption that |ED[fh]| < 2
r′(n,s) ≤ 2

q(n,s) . ¤

In the above proof we assumed that A is a deterministic algorithm. On the other
hand, the proof does not rely on the uniformity of the algorithm A (our only restriction
is the polynomial number of queries). As is well known, any randomized algorithm can be
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transformed into non-uniform (deterministic) algorithm (in the context of languages this
result is referred as BPP ⊂ P/poly). Therefore, Theorem 31 is also true for classes weakly
learnable by randomized algorithms.

This characterization can be easily extended to SQ–D in the following way. Every query
(fg, ρ, D′) to STAT(f,D) has its own distribution D′ ∈ D. Thus the fact that results of a
query differ “noticeably” from 0 means that f is weakly approximated with respect to some
distribution from D. Distinct queries may use distinct distributions from D and therefore
along with every function in the approximating collection of sets we need to record the
distribution with respect to which function in F is approximated. Formally, we say that a
set W ⊆ {−1, 1}X ×D ε–approximates the set V of Boolean functions with respect to D if
for every f ∈ V there exists a pair (g, D′) ∈ W such that g ε–approximates f with respect
to D′. Theorem 31 is generalized to SQ–D as follows.

Theorem 32 Let F be a class learnable in SQ–D. For p and r′ defined as in Theorem 31
there exists a collection of sets {Wi}∞i=1 such that Ws ⊆ {−1, 1}X × D, |Ws| ≤ p(n, s) + 1
and Ws (1

2 − 1
r′(n,s))–approximates Fs with respect to D.

5.3 Applications

Although the characterization we gave for the SQ model is not equivalent to characterization
by SQ–DIM [BFJ+94] (see Section 1.1 for more details) it is applied in a very similar way.
To demonstrate this we give a new proof for the main result obtained using the SQ–DIM
characterization.

Theorem 33 Any concept class containing superpolynomial number of parity functions is
not weakly SQ–learnable with respect to the uniform distribution.

Proof: Since the size of representation of any parity function is bounded by a fixed polyno-
mial (e.g., c0n) by Theorem 31 (with Remark 1) we have that there exist polynomials r(n)
and p(n) such that F has a (1

2 − 1
r(n))–approximating set W of size bounded by p(n). For

any g ∈ W approximating a parity function χa means that |E[g(x)χa]| = |ĝ(a)| ≥ 2/r(n).
But from Parseval’s identity we know that

∑
a∈{0,1}n ĝ2(a) = 1. This means that at most

r2(n)/4 Fourier coefficients of g could be greater than 2/r(n), i.e., every g ∈ W could be
correlated with at most r2(n)/4 different parity functions. On the other hand, |W | ≤ p(n),
that is, W can approximate at most p(n)r2(n)/4 parity functions. Thus, any F containing
a superpolynomial number of parity functions is not weakly SQ–learnable with respect to
the uniform distribution. ¤

Our characterization of SQ–D learnable classes can be used to show the limitations of
the SQ–Dρ model. BSρ can be straightforwardly used to learn the class of all parity function
containing at most O(log n) variables (with respect to U). On the other hand, we will show
that the class of all the parity functions containing at most c(n) log n variables for unbounded
c(n) cannot be learned in SQ–Dρ. For this purpose we denote by Ak = {0, 1}k[0]n−k, and
let PARk denote the class of all parity functions for vectors in Ak, i.e., all parity functions
based on the first k variables. In fact, we give somewhat stronger result.

Theorem 34 PARk is not weakly learnable in SQ–Dρ for k(n) = ω(log n).

390



On Using Extended Statistical Queries to Avoid Membership Queries

Proof: Assume that the theorem is not true. By Theorem 32 (with Remark 1) there exist
polynomials p(n) and r(n) and set of pairs W = {(g1, D1), (g2, D2), . . . , (gm, Dm)} such that
|W | = m ≤ p(n) and for every χa ∈ PARk there exists (gi, Di) ∈ W , where Di ∈ Dρ, such
that EDi [giχa] ≥ 1/r(n). This means that

∑
1≤i≤m E2

Di
[giχa] ≥ 1/r2(n). Thus

∑

a∈Ak

∑

1≤i≤m

E2
Di

[giχa] ≥ |Ak|/r2(n)

This means that there exists i such that
∑

a∈Ak

E2
Di

[giχa] ≥ |Ak|/(|W |r2(n)) ≥ |Ak|/(p(n)r2(n)).

Or, if we denote by Uk a uniform distribution over Ak, then we get that

I , Ea∼Uk

[
E2

Di
[giχa]

] ≥ 1/(p(n)r2(n)). (11)

On the other hand,

I = Ea∼Uk

[
E2

Di
[giχa]

]
= Ea∼Uk [Ex∼Di [Ey∼Di [gi(x)χa(x)gi(y)χa(y)]]]

= Ex∼Di [Ey∼Di [gi(x)gi(y)Ea∼Uk [χa(x⊕ y)]]] . (12)

But

λ(z) , Ea∼Uk [χa(z)] = Ea∼Uk [χz[1,k]
(a[1,k])] =

{
0 z[1,k] 6= [0]k

1 z[1,k] = [0]k

Since λ(x⊕ y) is non-negative and |gi(x)gi(y)| = 1, equation (12) yields that

I ≤ Ex∼Di [Ey∼Di [λ(x⊕ y)]] = Ex∼Di [Pry∼Di [λ(x⊕ y) = 1]]

= Ex∼Di [Pry∼Di [y[1,k] = x[1,k]]] ≤ Ex∼Di [(1− ρ)k] ≤ (1− ρ)k . (13)

For k = ω(log n), (1 − ρ)k cannot be lower-bounded by inverse of a polynomial and thus
equation (11) contradicts equation (13). ¤

The last theorem may also be used to prove that the set of concept classes learnable
in the PAC model with classification noise of constant rate is not contained in the set of
concept classes weakly learnable in SQ–D 1

4
. This result can be obtained by combining our

result with the following theorem for k = log n log log n [BKW00, Theorem 2].

Theorem 35 PARk for noise rate η equal to any constant less than 1
2 , can be learned with

respect to the uniform distribution using number of samples and total computation time
2O(k/ log k).

Another interesting application of our characterization is to demonstrate that PAR,
the class of all parity functions, possesses some inherent hardness for any statistics based
learning. For this purpose we give the following definition. We say that a distribution class
D is biased if there exist a polynomial p(n) such that L∞(D) ≥ 1

p(n) . We may notice that
if a distribution class D is biased then a non-uniform learning algorithm may get the value
of the target function at the “biased” point. Use of attributes of specific point together
with its label contradicts the idea of statistical learning and, on the other hand, is the main
element of all the known algorithms for learning of parity functions.
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Theorem 36 Let D be a class of distributions. If D is not biased then for every D ∈ D,
PAR is not weakly learnable in the SQ–D model with respect to D.

Proof: By assuming that PAR is weakly learnable in SQ–D with respect to some distribu-
tion D ∈ D and then proceeding as in the proof of the previous theorem we get that there
exists set W and (gi, Di) ∈ W (Di ∈ D) such that

Ea∼U

[
E2

Di
[giχa]

] ≥ 1/(p(n)r2(n)).

On the other hand,

Ea∼U

[
E2

Di
[giχa]

]
= Ea∼U [Ex∼Di [Ey∼Di [gi(x)χa(x)gi(y)χa(y)]]]

= Ex∼Di [Ey∼Di [gi(x)gi(y)Ea∼U [χa(x⊕ y)]]] (14)

By the properties of parity functions, if x 6= y then Ea∼U [χa(x⊕ y)] = Ea∼U [χx⊕y(a)] = 0.
Otherwise, Ea∼U [χa(0n)] = 1. So the expression we are evaluating is equal to

Ex∼Di [Di(x)g2
i (x)] = Ex∼Di [Di(x)]

Thus we got that Ex∼Di [Di(x)] ≥ 1/(p(n)r2(n)), in particular there exists x such that
Di(x) ≥ 1/(p(n)r2(n)), that is, D is biased. This contradiction finishes the proof. ¤

6. Conclusions and Open Problems

In this work we have shown that DNF is learnable in an extension of the PAC model (PAC-
Dρ) that seems to be weaker than the use of membership queries. While it seems to be
very difficult to say anything about the exact strength of the PAC-Dρ model, we can show
that the statistical query analogue of PAC-Dρ (SQ–Dρ) is sufficient for our DNF learning
algorithm. This fact combined with characterization of SQ–Dρ learnable classes was used to
show that, in terms of learning parity functions, SQ–Dρ has just enough power to be able to
learn parity functions that can be expressed as polynomial-size DNF expressions. Another
useful property of the SQ–Dρ model used is that it can be simulated using membership
queries with persistent classification noise.

We have introduced an extension of attribute noise to membership queries. It turns out
that the use of membership queries with product attribute noise is interestingly related to
the SQ–Dρ model. We have shown that decision trees are learnable and DNF expressions
are weakly learnable by membership queries with product attribute noise.

The introduction of new model between PACU and PACU+MQ poses interesting and
apparently difficult questions about the relation between the strengths of these models.
Another interesting question of similar nature is whether there exists a class learnable in SQ–
Dρ and not learnable by membership queries with product attribute noise, and particularly
(in case the answer is positive) whether DNF is such a class. As we have proved, the power
of SQ–Dρ does not decrease when we decrease ρ. But it remains unclear to us whether the
power is strictly increasing or the models are equally strong (for a constant 0 < ρ < 1/2).
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