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Abstract

We consider the problem of finding a monomial (or a
term) that maximizes the agreement rate with a given set
of examples over the Boolean hypercube. The problem is
motivated by learning of monomials in theagnosticframe-
work of Haussler [12] and Kearnset al. [17]. Finding a
monomial with the highest agreement rate was proved to
beNP-hard by Kearns and Li [15]. Ben-Davidet al.gave
the first inapproximability result for this problem, proving
that the maximum agreement rate isNP-hard to approx-
imate within 770

767 − ε, for any constantε > 0 [5]. The
strongest known hardness of approximation result is due to
Bshouty and Burroughs, who proved an inapproximability
factor of 59

58−ε [8]. We show that the agreement rate isNP-
hard to approximate within2 − ε for any constantε > 0.
This is optimal up to the second order terms and resolves
an open question due to Blum [6]. We extend this result to
ε = 2− log1−λ n for any constantλ > 0 under the assump-
tion that NP 6⊆ RTIME(npoly log(n)), thus also obtaining
an inapproximability factor of2log1−λ n for the symmetric
problem of minimizing disagreements. This improves on the
log n hardness of approximation factor due to Kearnset al.
[17] and Hoffgenet al.[13].

∗Supported by grants from the National Science Foundation NSF-CCR-
0310882, NSF-CCF-0432037, and NSF-CCF-0427129.

1 Introduction

We study the computational complexity of approxima-
tion problems arising inagnostic learningof monomials.
The agnostic framework [12, 17] is a useful variant of
Valiant’s PAC learning model in which, informally, noth-
ing is known about the target function and a learning algo-
rithm is required to do nearly as well as is possible using
hypotheses from a given class. Haussler’s work [12] im-
plies that learnability in this model is, in a sense, equivalent
to the ability to come up with a member of the hypothesis
class that has close-to-the-optimal agreement rate with the
given examples.

For a number of concept classes it is known that find-
ing a hypothesis with the best agreement rate isNP-hard
[3, 13, 15]. However, for most practical purposes a hypoth-
esis with agreement rate close to the maximum would be
sufficient. This reduces agnostic learning of a function class
to a natural combinatorial approximation problem or, more
precisely, to the following two problems: approximating
the maximum agreement rate and the minimum disagree-
ment rate. We address the approximation complexity of
these problems for the class of monomials (also referred to
as terms). The class of monomials is one of the simplest
and most well-studied function classes easily learnable in a
variety of settings. Angluin and Laird proved that finding
a monotone monomial with the maximum agreement rate
(this problem is denotedMMon-MA) is NP-hard [3]. This
was extended to general monomials by Kearns and Li [15]
(the problem is denotedMon-MA). Ben-Davidet al. gave
the first inapproximability result for this problem, proving
that the maximum agreement rate isNP-hard to approxi-
mate within a factor of770767 − ε for any constantε > 0
[5]. This result was more recently improved by Bshouty
and Burroughs to the inapproximability factor of59

58 − ε [8].
The problem of approximating the minimum disagree-

ment with a monomial (denotedMon-MD) was first con-
sidered by Kearnset al.who give an approximation preserv-
ing reduction from the SET-COVER problem toMon-MD
(similar result was also obtained by Hoffgenet al. [13]).



This reduction together with the hardness of approximation
results for SET-COVER due to Lund and Yannakakis [18]
(see also [20]) implies thatMon-MD is NP-hard to approx-
imate within a factor ofc log n for some constantc.

On the positive side, the only non-trivial approximation
algorithm is due to Bshouty and Burroughs and achieves
2 − log n

n -approximation for the agreement rate [8]. Note
that factor2 can always be achieved by either constant 0 or
constant 1 function.

In this work, we give the following inapproximability
results forMon-MA.

Theorem 1 For every constantε > 0, Mon-MA isNP-hard
to approximate within a factor of2− ε.

Then, under a slightly stronger assumption, we show that
the second order term is small.

Theorem 2 For any constantλ > 0, there is no
polynomial-time algorithm that approximatesMon-MA
within a factor of 2 − 2− log1−λ n, unless NP ⊆
RTIME(npoly log(n)).

Theorem 2 also implies strong hardness results for
Mon-MD.

Corollary 3 For any constantλ > 0, there is no polyno-
mial time algorithm that approximatesMon-MD within a
factor of2log1−λ n, unlessNP ⊆ RTIME(npoly log(n)).

In practical terms, these results imply that even very low
(subconstant) amounts of “noise” in the examples make
finding a term with agreement rate larger (even by very
small amount) than1/2, NP-hard, in other words evenweak
agnostic learningof monomial isNP-hard. This resolves an
open problem due to Blum [6].

All of our results hold for theMMon-MA problem as
well. A natural equivalent formulation of theMMon-MA
problem is maximizing the number of satisfiedmonotone
clause constraints, that is, equations of the formt(x) = b,
where t(x) is a disjunction of (unnegated) variables and
b ∈ {0, 1} (see Definition 6 for more details). In the proof
of Theorem 1, each of the clause constrains will only have a
constant number of variables and therefore our hardness re-
sult is equivalent to the PCP theorem (with imperfect com-
pleteness).

Finally, we show that Theorems 1 and 2 can be eas-
ily used to obtain hardness of agnostic learning results for
classes richer than monomials, thereby improving on sev-
eral known results and establishing hardness of agreement
max/minimization for new function classes.

It is important to note that our results do not rule out ag-
nostic learning of monomials when the disagreement rate
is very low (i.e.2− log1−o(1) n), weak agnostic learning with
agreement lower than1/2+2− log1−o(1) n or agnostic learn-
ing of monomials by unrestricted hypotheses.

Our proof technique is based on using Feige’s multi-
prover proof system for 3SAT-5 (3SAT with each variable
occurring in exactly 5 clauses) together with set systems
possessing a number of specially-designed properties. The
set systems are then constructed by a simple probabilistic
algorithm. As in previous approaches, our inapproximabil-
ity results are eventually based on the PCP theorem. How-
ever, previous results reduced the problem to an interme-
diate problem (such as MAX-CUT, MAX-E2-SAT, or SET
COVER) thereby substantially losing the generality of the
constraints. We believe that key ideas of our technique
might be useful in dealing with other constraint satisfac-
tion problems involving constraints that are conjunctions or
disjunctions of Boolean variables.

1.1 Related Work

Besides the results for monomials mentioned earlier,
hardness of agnostic learning results are known for a num-
ber of other classes. Optimal hardness results are known
for the class of parities. H̊astad proved that approximating
agreements with parities within a factor of2− ε is NP-hard
for any constantε. Amaldi and Kann [2], Ben-Davidet al.
[5], and Bshouty and Burroughs [8] prove hardness of ap-
proximating agreements with halfspaces (factors262

261 , 418
415 ,

and 85
84 , respectively). Similar inapproximability results are

also known for 2-term DNF, decision lists and balls [5, 8].
Arora et al. give strong inapproximability results

for minimizing disagreements with halfspaces (factor
2log0.5−ε n) and with parities1 (factor 2log1−ε n) under the
assumption thatNP 6⊆ DTIME(npoly log n). Bshouty and
Burroughs prove inapproximability of minimizing disagree-
ments withk-term multivariate polynomials (factorln n)
and a number of other classes [7].

For an extension of the agnostic framework where a
learner can output a hypothesis from a richer class of func-
tions (see also Section 2.1) the first non-trivial algorithm
for learning monomials was recently given by Kalaiet al.
[14]. Their algorithm learns monomials agnostically in time
2Õ(

√
n). They also gave a breakthrough result for agnostic

learning of halfspaces by showing a simple algorithm that
for any constantε > 0 agnostically learns halfspaces with
respect to the uniform distribution up toε accuracy (both
their algorithm output thresholds of parities as hypotheses).

We also note that minimum disagreement cannot be ap-
proximated for classes that are known to be notproperly
learnable i.e. when a hypothesis has to use the same repre-
sentation as the class being learned (since in the usual PAC
model it is assumed that there exists a hypothesis with zero
disagreement rate). In particular, the minimum disagree-
ment with various classes of DNF formulae, intersections

1This problem is more commonly known as “finding the nearest code-
word”.
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of halfspaces, decision trees, and juntas cannot be approxi-
mated [19, 1].

2 Preliminaries and Notation

For a vectorv, we denote itsith element byvi (unless
explicitly defined otherwise). For a positive integerm we
denote[m] = {1, 2, . . . ,m}. We say that a functionf
(of any arity) isÕ(g), whereg is the function of the same
parameters, if there exist two constantsc andd such that
f ≤ c · g · logd (g).

The domain of all discussed Boolean functions is the
Boolean hypercube{0, 1}n. The ith literal is a function
over{0, 1}n equal to thei-th coordinate of a point and de-
notedxi, or its negation, denoted̄xi. A monomialis a con-
junction of literals and/or constants (0 and 1). It is also
commonly referred to as aterm. A monotone monomial is a
monomial that includes only positive literals and constants.
We denote the function class of all monomials byMon and
the class of all monotone monomials byMMon. A DNF for-
mula is a disjunction of terms and ak-term DNF formula is
a disjunction ofk terms. Ahalfspaceor a thresholdfunc-
tion is a function equal to

∑
i∈[n] wixi ≥ θ (as a Boolean

expression), wherew1, . . . , wk, θ are real numbers.

2.1 The Problem

For the purposes of this discussion it suffices to define
the combinatorial optimization problem and therefore we
include the definition of the PAC agnostic learning frame-
work for reader’s convenience only.

For two Boolean functionsf andh and a distributionD
over{0, 1}n we define∆D(f, h) = PrD[f 6= h]. Similarly,
for a class of Boolean functionsC and a functionf define
∆D(f, C) = minh∈C{∆D(f, h)}. We say that a classC is
PAC learnable in the agnostic model, if there exists an al-
gorithm that for every distributionD, Boolean functionf
andε > 0, runs in time polynomial inn and1/ε and, with
probability at least 1/2, produces a hypothesish such that
∆D(f, h) ≤ ∆D(f, C) + ε. Haussler’s original definition
required thath belong toC and corresponds to the approxi-
mation problems that we address2 . It is easy to see that this
definition is equivalent to approximating the agreement rate
(or the disagreement rate) within additiveε. It suggests two
approximation problems with more usual multiplicative fac-
tors: disagreement minimization and agreement maximiza-
tion (some authors call this versionco-agnostic learning).
The interested reader is referred to the work of Haussler
[12], Kearnset al. [17], and Valiant [22] for more details on
the models and their relation to the optimization problems.
We now proceed to define the problems more formally.

2This representation restriction was relaxed by Kearnset al. [17].

For a domainD, an exampleis a pair (x, b) where
x ∈ D and b ∈ {0, 1}. An example is calledpositive
if b = 1, andnegativeotherwise. For a set of examples
S ⊆ D × {0, 1}, we denoteS+ = {x | (x, 1) ∈ S}
and similarly S− = {x | (x, 0) ∈ S}. For any func-
tion f and a set of examplesS, the agreement rateof

f with S is AgreeR (f, S) = |Tf∩S+|+|S−\Tf |
|S| , where

Tf = {x | f(x) = 1}. For a class of functionsC, let
AgreeR (C, S) = maxf∈C{AgreeR (f, S)}.

Definition 4 For a class of functionsC and domainD, we
define theMaximum AgreementproblemC-MA as follows:
The input is a set of examplesS ⊆ D × {0, 1}. The prob-
lem is to find a functionh ∈ C such thatAgreeR (h, S) =
AgreeR (C, S).

For α ≥ 1, an α-approximation algorithm forC-
MA is an algorithm that returns a hypothesish such that
α · AgreeR (h, S) ≥ AgreeR (C, S). Similarly, an α-
approximation algorithm for theMinimum Disagreement
problemC-MD is an algorithm that returns a hypothesish ∈
C such that1− AgreeR (h, S) ≤ α(1− AgreeR (C, S)).

An extension of the original agnostic learning frame-
work is the model in which a hypothesis may come from a
richer classH. The corresponding combinatorial problems
were introduced by Bshouty and Burroughs and are denoted
C/H-MA and C/H-MD [8]. Note that an approximation
algorithm for these problems can return a value larger than
AgreeR (C, S) and therefore cannot be used to approximate
even just the valueAgreeR (C, S).

Remark 5 Anα-approximation algorithm forC′-MA(MD)
whereC ⊆ C′ ⊆ H is an α-approximation algorithm for
C/H-MA(MD).

2.2 Agreement with Monomials and Set
Covers

For simplicity we first consider theMMon-MA problem.
The standard reduction of the general to the monotone case
[16] implies that this problem is at least as hard to approxi-
mate asMon-MA. We will later observe that our proof will
hold for the unrestricted case as well. We start by giving
two equivalent ways to formulateMMon-MA.

Definition 6 The Maximum Monotone Clause Constraints
problem MAX-MSAT is defined as follows: The input is a
setC of monotone clauses constraints, that is, equations of
the formt(x) = b where,t(x) is a clause without negated
variables andb ∈ {0, 1}. The output is a pointz ∈ {0, 1}n

that maximizes the number of satisfied equations inC. For
an integer functionB, MAX-B-MSAT is the same problem
with each clause containing at mostB variables.
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To see the equivalence ofMMon-MA and MAX-MSAT,
let ti be the variable “xi is present in the clauset”. Then
each constraintt(z) = b in MMon-MA is equivalent to
∨zi=0ti = 1 − b. Therefore we can interpret each point
in an example as a monotone clause and the clauset as a
point in{0, 1}n.

Another way equivalent way to formulateMMon-MA
and the one we will be using throughout our discussion is
the following.
Input: S = (S+, S−, {S+

i }i∈[n], {S−i }i∈[n]) where
S+

1 , . . . , S+
n ⊆ S+ andS−1 , . . . , S−n ⊆ S−.

Output: A set of indicesI that maximizes the sum of
two values,Agr −(S, I) = |⋃i∈I S−i | andAgr +(S, I) =
|S+| − |⋃i∈I S+

i |. We denote this sum byAgr (S, I) =
Agr −(S, I) + Agr +(S, I) and denote the maximum value
of agreement byMMaxAgr(S).

To see that this is an equivalent formulation, letS−i =
{x | x ∈ S− andxi = 0} andS+

i = {x | x ∈ S+ andxi =
0}. Then for any set of indicesI ⊆ [n], the monotone
monomialtI = ∧i∈Ixi is consistent with all the examples
in S− that have a zero in at least one of the coordinates
with indices inI, that is, with examples in

⋃
i∈I S−i . It is

also consistent with all the examples inS+ that do not have
zeros in coordinates with indices inI, that is,S+\⋃i∈I S+

i .
Therefore the number of examples with whichtI agrees is
exactlyAgr (S, I).

It is also possible to formulateMon-MA in a similar
fashion. We need to specify an additional bit for each vari-
able that tells whether this variable is negated in the mono-
mial or not (when it is present). Therefore the formulation
uses the same input and the following output.
Output(Mon-MA): A set of indicesI and a vectora ∈
{0, 1}n that maximizes the value

Agr (S, I, a) = |
⋃

i∈I

Z−i |+ |S+| − |
⋃

i∈I

Z+
i |,

whereZ
+/−
i = S

+/−
i if ai = 0 andZ

+/−
i = S+/− \S

+/−
i

if ai = 1. We denote the maximum value of agreement with
a general monomial byMaxAgr (S).

3 Hardness of Approximating Mon-MA and
Mon-MD

It is easy to see thatMMon-MA is similar to the SET-
COVER problem. Indeed, our hardness of approximation
result will employ some of the ideas from Feige’s hardness
of approximation result for SET-COVER [9].

3.1 Feige’s Multi-Prover Proof System

Feige’s reduction from the SET COVER problem is
based on a multi-prover proof system for 3SAT-5. The ba-
sis of the proof system is the standard two-prover protocol

for 3SAT in which the verifier chooses a random clause and
a random variable in that clause. It then gets the values of
all the variables in the clause from the first prover and the
value of the chosen variable from the second prover. The
verifier accepts if the clause is satisfied and the values of
the chosen variable are consistent [4]. Feige then amplifies
the soundness of this proof system by repeating the test`
times (based on Raz’ parallel repetition theorem [21]). Fi-
nally, the consistency checks are distributed tok provers
with each prover getting̀/2 clause questions and̀/2 vari-
able questions. This is done using an asymptotically-good
code withk codewords of length̀ and Hamming weight
`/2. The verifier accepts if at least two provers gave con-
sistent answers. More formally, for integerk and ` such
that` ≥ c` log k for some fixed constantc`, Feige defines a
k-prover proof system for 3SAT-5 where:

1. Given a 3CNF-5 formulaφ overn variables, verifierV
tosses a random stringr of length` log (5n) and gen-

eratesk queriesq1(r), . . . qk(r) of length` log
√

5
3n.

2. Given answersa1, . . . ak of length2` from the provers,
V computesV1(r, a1), . . . , Vk(r, ak) ∈ [2`] for fixed
functions3 V1, . . . , Vk.

3. V accepts if there existi 6= j such thatVi(r, ai) =
Vj(r, aj).

4. If φ ∈ 3SAT-5, then there exist ak-proverP̄ for which
V1(r, a1) = V2(r, a2) = · · · = Vk(r, ak) with proba-
bility 1 (note that this is stronger than the acceptance
predicate above).

5. If φ 6∈ 3SAT-5, then for anȳP , V accepts with proba-
bility at mostk22−c0` for some fixed constantc0.

3.2 Balanced Set Partitions

As in Feige’s proof, the second part of our reduction is
a set system with certain properties tailored to be used with
the equality predicate in the Feige’s proof system. Our set
system consists of two main parts. The first part is sets di-
vided into partitions in a way that sets in the same partition
are highly correlated (e.g., disjoint) and sets from different
partitions are uncorrelated. Covers by uncorrelated sets are
balanced in the sense that they cover about the same number
of points inS+ andS− and therefore the agreement rate is
close to1/2. Therefore these sets force any approximating
algorithm to use sets from the same partition.

The second part of our set system is a collection of uncor-
related smaller sets. These smaller sets do not substantially
influence small covers but make any cover by a large num-
ber of sets balanced. Therefore unbalanced covers have to

3These functions choose a single variable from each answer to a clause
question.
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use a small number of sets and have sets in the same parti-
tion. Intuitively, this makes it possible to use an unbalanced
cover to find consistent answers to verifiers questions. In
this sense, the addition of smaller sets is analogous to the
use of the random skew in the Håstad’s long code test [11].

Formally, abalanced set partitionB(m,L, M, k, γ) has
the following properties:

1. There is a ground setB of m points.

2. There is a collection ofL distinct partitionsp1, . . . , pL.

3. For i ≤ L, partitionpi is a collection ofk disjoint sets
Bi,1, . . . , Bi,k ⊆ B whose union isB.

4. There is a collection ofM setsC1, . . . , CM .

5. Let ρs,t = 1 − (1 − 1
k2 )s(1 − 1

k )t. For anyI ⊆ [M ]
andJ ⊆ [L] × [k] with all elements having different
first coordinate, it holds

∣∣∣∣∣∣

∣∣∣
(⋃

i∈I Ci

)⋃ (⋃
(i,j)∈J Bi,j

)∣∣∣
m

− ρ|I|,|J|

∣∣∣∣∣∣
≤ γ .

To see why a balanced set partition could be useful in
proving hardnessMMon-MA, consider an instanceS of
MMon-MA defined as follows. ForB(m,L, M, k, γ) as
above, letS+ = S− = B, S−j,i = Bj,i, andS+

j,i = Bj,1.
Now for anyj ∈ [L], and an index setIj = {(j, i) | i ∈ [k]},
|Agr (S, Ij)| ≥ (2 − 1

k − γ)m. On the other hand, for any
index setI that does not include two indices with the same
first coordinate, we have that|Agr (S, I)| ≤ (1 + 2γ)m.
For sufficiently largek and sufficiently smallγ, this creates
a multiplicative gap of2− ε between the two cases.

3.3 Creating Balanced Set Partitions

In this section, we show a straightforward randomized
algorithm that produces balanced set partitions.

Theorem 7 There exists a randomized algorithm that
on input k, L,M, γ produces, with probability at least
1
2 , a balanced set partitionB(m,L, M, k, γ) for m =
Õ(k2γ−2 log (M + L)) in timeO((M + L)m).

Proof: First we create the setsBj,i. To create each partition
j ∈ [L], we rollm k-sided dice and denote the outcomes by
d1, . . . , dm. SetBj,i = {r | dr = i}. This clearly defines a
collection of disjoint sets whose union is[m]. To createM
setsC1, . . . , CM , for eachi ∈ [M ] and eachr ∈ [m], we
includer in Ci with probability 1

k2 .
Now let I ⊆ [M ] and J ⊆ [L] × [k] be a

set of indices with different first coordinate (correspond-
ing to sets from different partitions) and letU =

(⋃
i∈I Ci

) ⋃ (⋃
(i,j)∈J Bi,j

)
. Elements of these sets are

chosen independently and therefore for eachr ∈ [m],

Pr[r ∈ U ] = 1− (1− 1
k2

)|I|(1− 1
k

)|J| = ρ|I|,|J|

independently of other elements of[m]. Using Chernoff
bounds, we get that for anyδ > 0,

Pr
[∣∣∣∣
|U |
m

− ρ|I|,|J|

∣∣∣∣ > δ

]
≤ 2e−2mδ2

,

which is exactly the property 5 of balanced set partitions
(for δ = γ). Our next step is to ensure that property 5 holds
for all possible index setsI andJ . This can be done by
first observing that it is enough to ensure that this condition
holds forδ = γ/2, |I| ≤ k2 ln 1

δ and |J | ≤ k ln 1
δ . This

is true since for|I| ≥ k2 ln 1
δ and everyt, ρ|I|,t ≥ 1 − δ.

Therefore|U |/m − ρ|I|,t ≤ 1 − ρ|I|,t ≤ δ < γ. For the
other side of the bound on the size of the union, letI ′ be a
subset ofI of sizek2 ln 1

δ andU ′ be the union of sets with
indices inI ′ andJ . It then follows that

ρ|I|,t −
|U |
m

≤1− |U ′|
m

≤ 1− (ρk2 ln 1
δ ,t − δ)

≤1− (1− δ) + δ = γ.

The second condition,|J | ≤ k ln 1
δ , is obtained analo-

gously.
There are at mostMs different index setsI ⊆ [M ] of

size at mosts and at most(kL)t different index setsJ of
size at mostt. Therefore, the probability that property 5
does not hold is at most

((kL)k ln 1
δ + Mk2 ln 1

δ ) · 2e−2mδ2
.

For

m ≥ 2k2γ−2 · ln (kL + M) · ln 2
γ

+ 2,

this probability is less than1/2. 2

We can now proceed to the reduction itself.

3.4 Main Reduction

Below we describe our main transformation from Feige’s
proof system toMMon-MA. To avoid confusion we de-
note the number of variables in a given 3CNF-5 formula
by d and usen to denote the number of sets in the pro-
ducedMMon-MA instance (that corresponds to the number
of variables in the original formulation).

Theorem 8 For every ε > 0 (not necessarily constant),
there exists an algorithmA that given a 3CNF-5 formula
φ overd variables, produces an instanceS of MMon-MA
on base setsS+ andS− of sizeT such that
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1. A runs in time2O(`) plus the time to create a balanced
set partitionB(m, 2`, 4`, 1

4ε ,
ε
4 ), where` = c1 log 1

ε
for some constantc1.

2. |S+| = |S−| = T = (5d)`m, wherem is the size of
the ground set of the balanced set partition.

3. n = 4
ε (4

√
5
3 · d)`.

4. If φ ∈3SAT-5, thenMMaxAgr(S) ≥ (2− ε)T .

5. If φ 6∈3SAT-5, then|MMaxAgr(S)− T | ≤ ε · T .

Proof: Let k = 1
4ε , γ = ε/4, and V be Feige’s veri-

fier for 3SAT-5. Givenφ, we construct an instanceS of
MMon-MA as follows. LetR denote the set of all possible
random strings used byV , let Qi denote the set of all pos-
sible queries to proveri and letAi = {0, 1}2` denote the
set of possible answers of proveri. Let L = 2`, M = 22`,
andB(m,L, M, k, γ) be a balanced set partition. We set
S+ = S− = R × B, and for everyr ∈ R andB′ ⊆ B, let
(r,B′) denote the set{(r, b) | b ∈ B′}. We now proceed to
define the sets inS. For i ∈ [k], q ∈ Qi anda ∈ Ai we set

S−(q,a,i) =
⋃

qi(r)=q

(r,BVi(r,a),i ∪ Ca) and

S+
(q,a,i) =

⋃

qi(r)=q

(r,BVi(r,a),1 ∪ Ca) .

Intuitively, setsS−(q,a,i) (or S+
(q,a,i)) correspond to proveri

respondinga when presented with queryq. We can also im-
mediately observe that answers from different provers that
are mapped to the same value (and hence cause the verifier
to accept) correspond to sets inS− that are almost disjoint
and strongly overlapping sets inS+. To formalize this intu-
ition, we prove the following claims.

Claim 9 If φ ∈3SAT-5, thenMMaxAgr(S) ≥ (2− ε)T for
T = m|R|.
Proof: Let P̄ be thek-prover that always answers consis-
tently and letPi(a) denote the answer of theith prover to
questiona. Now consider the set of indices

I = {(q, Pi(q), i) | i ∈ [k], q ∈ Qi} .

For eachr ∈ R, the proverP̄ satisfies

V1(r, P1(q1(r))) =V2(r, P2(q2(r))) = · · ·
=Vk(r, Pk(qk(r))) = c(r) .

Therefore,
⋃

i∈[k]

S−(qi(r),Pi(qi(r)),i)
⊆

⋃

i∈[k]

(r,Bc(r),i) = (r,B) .

This means that sets with indices inI cover all the points in
S− = R×B. On the other hand for eachr,
⋃

i∈[k]

S+
(qi(r),Pi(qi(r)),i)

=
⋃

i∈[k]

(r,Bc(r),1 ∪ CPi(qi(r)))

=(r,Bc(r),1) ∪ (r,
⋃

i∈[k]

CPi(qi(r))) .

This implies that for eachr only (r,Bc(r),1 ∪ CPi(qi(r))) is
covered in(r,B). By property 5 of balanced set partitions,
the size of this set is at most

(1− (1− 1
k

)(1− 1
k2

)k + γ)m ≤(1− (1− 1
k

)2 + γ)m

≤(
2
k

+ γ)m < εm .

This means that at mostε fraction ofS− is covered by the
sets with indices inI. Therefore

Agr (S, I) ≥ (1 + 1− ε)m|R| = (2− ε)T .

2

For the case whenφ 6∈ 3SAT-5, letI be any set of indices
for the instanceS. LetSr denote an instance ofMMon-MA
obtained by restrictingS to points with the first coordinate
equal tor. We denote corresponding restrictions of the base
sets byS−r and S+

r . It is easy to see thatAgr (S, I) =∑
r∈R Agr (Sr, I). We say thatr is goodif |Agr (Sr, I) −

1| > ε
2m, and letδ denote the fraction of goodr’s. Then it

is clear that

Agr (S, I) ≤ δ·2T+(1−δ)(1+ε/2)T ≤ (1+ε/2+2δ)T , and

Agr (S, I) ≥ (1− δ)(1− ε/2)T ≥ (1− ε/2− δ)T .

Hence

|Agr (S, I)− T | ≤ (ε/2 + 2δ)T. (1)

Claim 10 There exists a prover̄P that will make the veri-
fier V accept with probability at leastδ(k2 ln 4

ε )−2.

Proof: We defineP̄ with the following randomized strat-
egy. Let q be a question to proveri. Define Ai

q =
{a | (q, a, i) ∈ I} andPi to be the prover that presented
with q answers with a random element fromAi

q. We show
that properties ofB imply that there existi andj such that
ai ∈ Ai

qi(r)
, aj ∈ Ai

qj(r)
, andVi(r, ai) = Vj(r, aj). To see

this, denoteV i
q = {Vi(a) | a ∈ Ai

q}. Then

Agr −(Sr, I) =

∣∣∣∣∣∣
S−r ∩


 ⋃

(q,a,i)∈I

S−(q,a,i)




∣∣∣∣∣∣

=

∣∣∣∣∣∣∣




⋃

i∈[k], j∈V i
qi(r)

Bj,i




⋃



⋃

i∈[k], a∈Ai
qi(r)

Ca




∣∣∣∣∣∣∣
.
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Now, if for all i 6= j, V i
qi(r)

∩ V j
qj(r)

= ∅, then all ele-

ments in setsV 1
q1(r)

, . . . , V k
qk(r) are distinct and therefore by

property 5 of balanced set partitions,
∣∣∣∣
Agr −(Sr, I)

m
− 1 + (1− 1

k2
)s(1− 1

k
)t

∣∣∣∣ ≤ γ ,

wheres = | ∪i∈[k] Ai
qi(r)

| andt =
∑

i∈[k] |V i
qi(r)

|. Simi-
larly,

Agr +(Sr, I) = m−
∣∣∣∣∣∣
S−r ∩


 ⋃

(q,a,i)∈I

S−(q,a,i)




∣∣∣∣∣∣

=

∣∣∣∣∣∣∣




⋃

i∈[k], j∈V i
qi(r)

Bj,1




⋃



⋃

i∈[k], a∈Ai
qi(r)

Ca




∣∣∣∣∣∣∣

and therefore
∣∣∣∣
Agr +(Sr, I)

m
− (1− 1

k2
)s(1− 1

k
)t

∣∣∣∣ ≤ γ .

This implies that|Agr (Sr, I)−m| ≤ 2γm = ε
2m, contra-

dicting the assumption thatr is good. Hence, leti′ andj′

be the indices for whichV i′
qi′ (r)

∩ V j′

qj′ (r)
6= ∅. To analyze

the success probability of the defined strategy, we observe
that if s ≥ k2 ln 4

ε , then(1− 1
k2 )s < ε

4 and consequently

∣∣∣∣∣∣∣

⋃

i∈[k], a∈Ai
qi(r)

Ca

∣∣∣∣∣∣∣
≥ (1− ε

4
− γ)m .

ThereforeAgr +(Sr, I) ≤ ( ε
4 − γ)m andAgr −(Sr, I) ≥

(1 − ε
4 − γ)m. Altogether, this would again imply that

|Agr (Sr, I) − m| ≤ ( ε
4 + γ)m = ε

2 , contradicting the
assumption thatr is good.

For alli ∈ [k], |Ai
qi(r)

| ≤ s ≤ k2 ln 4
ε . In particular, with

probability at least(k2 ln 4
ε )−2, Pi′ will chooseai′ andPj′

will chooseaj′ such thatVi′(r, ai′) = Vj′(r, aj′), causing
V to accept. As this happens for all goodr’s, the success
probability ofP̄ is at leastδ(k2 ln 4

ε )−2. 2

Using the bound on the soundness ofV , Claim 10 im-
plies thatδ(k2 ln 4

ε )−2 ≤ k22−c0`, or δ ≤ (k3 ln 4
ε )22−c0`.

Thus for

` =
1
c0

log (
4
ε
(k3 ln

4
ε
)2) ≤ c1 log

1
ε

(2)

we getδ ≤ ε
4 . We setc1 to be at least as large asc` (con-

stant defined in Section 3.1). Forδ ≤ ε
4 equation 1 gives

|Agr (S, I)−T | ≤ εT . The total number of sets used in the
reduction (which corresponds to the number of variablesn
is k · |Q| · |A| where|Q| is the number of different queries
that a prover can get and|A| is the total number of answers

that a prover can return (both|A| and|Q| are equal for all
the provers). Therefore, by the properties of Feige’s proof

system,n = 4
ε (4

√
5
3 · d)`. 2

An important property of this reduction is that all the sets
that are createdS+/−

(q,a,i) have size at mostε|Q||B|, where
|Q| is the number of possible queries to a prover (it is the
same for all the provers). Hence each set covers at most
ε|Q|/|R| < ε fraction of all the points. This implies that
a monomial with a negated variable will be negative on all
but fractionε of all the positive examples and will be con-
sistent with all but at most fractionε of all the negative ex-
amples. In other words, a non-monotone monomial will
always agree with at least(1 − ε)T examples and at most
(1 + ε)T examples.

Corollary 11 Theorem 8 holds even when the outputS is
an instance ofMon-MA, that is, withMaxAgr (S) in place
of MMaxAgr(S).

Remark 12 For eachr ∈ R and b ∈ B, (r,B) belongs
to at mostk · M = poly( 1

ε ) sets inS. This means that
in theMMon-MA instance each example will havepoly( 1

ε )
zeros. This, in turn, implies that an equivalent instance of
MAX-MSAT will havepoly( 1

ε ) variables in each clause.

3.5 Results and Applications

We are now ready to use the reduction from Section 3.4
with balanced set partitions from Section 3.3 to prove our
main theorems.

Theorem 13 (same as 1)For every constantε′ > 0,
MMon/Mon-MA is NP-hard to approximate within a fac-
tor of 2− ε′.

Proof: We use Theorem 8 forε = ε′/2. Thenk, γ, and`
are constants and thereforeB(m, 2`, 4`, 1

4ε ,
ε
4 ) can be con-

structed in constant randomized time. The reduction creates
an instance ofMon-MA of size polynomial ind and runs in
time dO(`) = poly(d). By derandomizing the construction
of B in a trivial way, we get a deterministic polynomial-
time reduction that produces a gap inMon-MA instances of
2−ε
1+ε > 2− ε′. 2

Furthermore, Remark 12 implies that for any constantε,
there exists a constantB such that MAX-B-MSAT isNP-
hard to approximate within2 − ε. This formulation im-
plies the PCP theorem with imperfect completeness (as in
the case of parities, if all the monotone clause constraints
are satisfiable then the solution is easy to find).

Theorem 1 can be easily extended to subconstantε.

Theorem 14 (same as 2)For any constant λ > 0,
there is no polynomial-time algorithm that approximates
MMon/Mon-MA within a factor of2 − 2− log1−λ n, unless
NP ⊆ RTIME(npoly log(n)).
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Proof: We use Theorem 8 withε′ = 2− logr d for somer
to be specified later. Thenk = 4 · 2logr d, γ = 2− logr d/4
and` = c1 · logr d. ThereforeB(m, 2`, 4`, 1

4ε′ ,
ε′
4 ) can be

constructed in polynomial in2logr d randomized time and
m = 2c2 logr d. The rest of the reduction takes time2O(`) =
2O(logr d) and creates an instance ofMMon-MA over n =
dc3 logr d = 2c3 logr+1 d variables. Therefore, forr = 1

λ ,

ε′ ≤ 2− log1−λ n. 2

It is easy to see that the gap in the agreement rate be-
tween1 − ε and1/2 + ε implies a gap in the disagreement
rate of 1/2−ε

ε > 1
3ε (for small enoughε). That is, we get the

following multiplicative gap for approximatingMon-MD.

Corollary 15 (same as 3)For any constant λ > 0,
there is no polynomial time algorithm that approximates
MMon/Mon-MD within a factor of2log1−λ n, unlessNP ⊆
RTIME(npoly log(n)).

A simple application of these results is hardness of ap-
proximate agreement maximization with function classes
richer than monomials. More specifically, letC be a class
that includes monotone monomials. Assume that for ev-
ery f ∈ C such thatf has high agreement with the sam-
ple, one can extract a monomial with “relatively” high
agreement. Then we could approximate the agreement or
the disagreement rate with monomials, contradicting The-
orems 1 and 2. A simple and, in fact, the most general
class with this property, is the class of threshold functions
with low integer weights. Let THW (C) denote the class
of all functions equal to12 + 1

2sign (
∑

i≤k wi(2fi − 1)),
where k, w1, . . . , wk are integer,

∑
i≤k |wi| ≤ W , and

f1, . . . , fk ∈ C (this definition of a threshold function is
simply sign (

∑
i≤k wifi) whenfi and the resulting func-

tion are in the range{−1,+1}). The following lemma is
a straightforward generalization of a simple lemma due to
Goldmannet al. [10] (the original version is forδ = 0).

Lemma 16 Let C be a class of functions and letf ∈
THW (C). If for some functiong and distributionD,
PrD[f = g] ≥ 1 − δ, then for one of the input func-
tions h ∈ C to the threshold functionf , it holds that
|PrD[h = g]− 1/2| ≥ 1−δ(W+1)

2W .

Proof: Let D′ be the distributionD conditioned onf(x) =
g(x). By the definition ofD′, PrD′ [f = g] = 1. We can
therefore apply the original lemma and get that there exists
h ∈ C such that|PrD′ [h = g] − 1/2| ≥ 1

2W . Therefore

|PrD[h = g]− 1/2| ≥ 1−δ(W+1)
2W . 2

Hence we obtain the following results.

Corollary 17 For any constantλ > 0 and t = 2log1−λ n,
there is no polynomial-time algorithm that approximates
MMon/THt(Mon)-MD within a factor oft, unlessNP ⊆
RTIME(npoly log(n)).

Corollary 18 For every constant k and ε > 0,
MMon/THW (Mon)-MA is NP-hard to approximate within
a factor of1 + 1

W − ε.

Proof: The reduction in Theorem 1 proves hardness of
distinguishing instances ofMMon-MA with the maximum
agreement rater being≥ 1 − ε′

2 and instances for which

|r− 1/2| ≤ ε′
2 . If there exists an algorithm that, given sam-

ple withr ≥ 1− ε′
2 , can produce a functionf ∈ THW (Mon)

such thatf agrees with at leastWW+1 + ε′ fraction of exam-
ples then, by Lemma 16, one of the monomials used byf
has agreement rater′ that satisfies

|r′ − 1
2
| ≥ 1− δ(W + 1)

2W
≥1− ( 1

W+1 − ε′)(W + 1)
2W

=
ε′(W + 1)

2W
>

ε′

2
.

Therefore MMon/THW (Mon)-MA cannot be approxi-
mated within 1−ε′

W
W+1+ε′ ≥ 1 + 1

W − ε for an appropriate

choice ofε′. 2

A k-term DNF can be expresses asTHk+1(Mon).
Therefore Corollary 18 improves the best known inapprox-
imability factor for (2-term DNF)-MA from59

58 − ε [8] to
4/3 − ε and gives the first results on hardness of agree-
ment maximization with thresholds of any constant number
of terms.

4 Discussion and Further Work

While this work resolves approximation complexity of
the maximum agreement problem for monomials, several
questions remain open for other simple function classes.
Most notably, the best inapproximability factor known for
halfspaces is8584 , while no approximation algorithms achiev-
ing better than(2− log n/n)-approximation are known [8].

It would also be interesting to see whether the construc-
tion of balanced set partitions can be derandomized. We
remark that derandomizing this construction would, in par-
ticular, produce a bipartite expander graph with almost op-
timal expansion factor.
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