Optimal Hardness Results for Maximizing Agreements with Monomials

Vitaly Feldmari
Harvard University
Cambridge, MA 02138
vitaly@eecs.harvard.edu

Abstract 1 Introduction

we consider_ the problem of finding a mqnomia_l (ora e study the computational complexity of approxima-
term) that maximizes the agreement rate with a given Spfttion problems arising iragnostic learningof monomials.

of examples over the Boolean hypercube. The problem SThe agnostic framework [12, 17] is a useful variant of

motivated by learning of monomials in thgnosticrame-  \j5jianr's PAC learning model in which, informally, noth-
work of Haussler [12] and Kearnst al.[17]. Finding @ 45 known about the target function and a learning algo-
monomial with the highest agreement rate was proved 10 i, is required to do nearly as well as is possible using

be NP-hard by Kearns and Li [15]. Ben-Davidtal.gave nqheses from a given class. Haussler's work [12] im-
the first |napprOX|mab|I|ty result for t_h's problem, proving plies that learnability in this model is, in a sense, equivalent
that the maximum agreement rateN-hard t0 approx-  t, the apility to come up with a member of the hypothesis

H thin 770
imate within 7z — ¢, for any constant > 0 [5]. The ;554 that has close-to-the-optimal agreement rate with the
given examples.

strongest known hardness of approximation result is due to
Bshouty and Burroughs, who proved an inapproximability For a number of concept classes it is known that find-
ing a hypothesis with the best agreement ratdliishard

factor of% — € [8]. We show that the agreement rateNg-
tl]'irg It: c?pt?r:;)xllmatte Wr']th'@ N e(l;or ‘Zny constant d> 0. | [3, 13, 15]. However, for most practical purposes a hypoth-
ptima’ up 1o the second order terms and resoves o qis with agreement rate close to the maximum would be
an ope? qllfstlon due to Blum [6]. We extend this result to sufficient. This reduces agnostic learning of a function class
¢ =27 " forany consltr:}ntx > 0 under the assump- ¢, 5 natural combinatorial approximation problem or, more
tion thatNP ¢ RTIME(n?*v Og(f)); thus also obtaining  hrecisely, to the following two problems: approximating
an inapproximability factor o'°s" " " for the symmetric  the maximum agreement rate and the minimum disagree-
problem of minimizing disagreements. This improves on thement rate. \We address the approximation complexity of
log n hardness of approximation factor due to Keagtal.  these problems for the class of monomials (also referred to
[17] and Hoffgenet al.[13]. as terms). The class of monomials is one of the simplest
and most well-studied function classes easily learnable in a
variety of settings. Angluin and Laird proved that finding
a monotone monomial with the maximum agreement rate
(this problem is denoteMon-MA) is NP-hard [3]. This
was extended to general monomials by Kearns and Li [15]
(the problem is denotelflon-MA). Ben-Davidet al. gave
the first inapproximability result for this problem, proving
that the maximum agreement rateN®-hard to approxi-
mate within a factor of%g — ¢ for any constant > 0
[5]. This result was more recently improved by Bshouty
and Burroughs to the inapproximability factor%— € [8].

The problem of approximating the minimum disagree-
ment with a monomial (denotedlon-MD) was first con-
sidered by Kearnst al.who give an approximation preserv-
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This reduction together with the hardness of approximation  Our proof technique is based on using Feige’s multi-
results for SET-COVER due to Lund and Yannakakis [18] prover proof system for 3SAT-5 (3SAT with each variable
(see also [20]) implies théflon-MD is NP-hard to approx-  occurring in exactly 5 clauses) together with set systems
imate within a factor of:1og n for some constant. possessing a number of specially-designed properties. The
On the positive side, the only non-trivial approximation set systems are then constructed by a simple probabilistic
algorithm is due to Bshouty and Burroughs and achievesalgorithm. As in previous approaches, our inapproximabil-
2 — 10%-approximation for the agreement rate [8]. Note ity results are eventually based on the PCP theorem. How-
that factor2 can always be achieved by either constant O or ever, previous results reduced the problem to an interme-

constant 1 function. diate problem (such as MAX-CUT, MAX-E2-SAT, or SET
In this work, we give the following inapproximability = COVER) thereby substantially losing the generality of the
results forMon-MA. constraints. We believe that key ideas of our technique

might be useful in dealing with other constraint satisfac-
tion problems involving constraints that are conjunctions or
disjunctions of Boolean variables.

Theorem 1 For every constart > 0, Mon-MA isNP-hard
to approximate within a factor of — e.

Then, under a slightly stronger assumption, we show that
the second order term is small. 1.1 Related Work

Theorem 2 For any constantA > 0, there is no
polynomial-time algorithm that approximateSlon-MA
within a factor of 2 — 218" "7 ynless NP C
RTIME (nPolvloe(n)),

Besides the results for monomials mentioned earlier,
hardness of agnostic learning results are known for a num-
ber of other classes. Optimal hardness results are known
for the class of parities. &btad proved that approximating
Theorem 2 also implies strong hardness results foragreements with parities within a factordf- ¢ is NP-hard
Mon-MD. for any constant. Amaldi and Kann [2], Ben-Daviét al.
C(_Jroll_ary 3 For_ any constant\ > 0, there is no po_lyno- LSer?ratjat?nsth;:i::gri: wwgzg&ggg%gg%%eS4S180f ap
mial “mela'%‘i”thm that approxmatdvlonl-l\{lD within a and& <1+ respectively). Similar inapproximability results are
factor of2!¢ ", unlessNP C RTIME(npetv o)), also known for 2-term DNF, decision lists and balls [5, 8].

In practical terms, these results imply that even very low  Arora et al. give strong inapproximability results
(subconstant) amounts of “noise” in the examples make for m|n|m|zmg disagreements with halfspaces (factor
finding a term with agreement rate larger (even by very 9los”* "1y and with paritied (factor 2'°s' ") under the
small amount) thai/2, NP-hard, in other words evemeak assumption thaNP ¢ DTIME(nP°¥!°en), Bshouty and
agnostic learningf monomial isNP-hard. This resolves an  Burroughs prove inapproximability of minimizing disagree-

open problem due to Blum [6]. ments with k-term multivariate polynomials (factdmn n)

All of our results hold for theMMon-MA problem as  and a number of other classes [7].
well. A natural equivalent formulation of thilMon-MA For an extension of the agnostic framework where a
problem is maximizing the number of satisfiatbnotone learner can output a hypothesis from a richer class of func-
clause constraintshat is, equations of the fort{z) = b, tions (see also Section 2.1) the first non-trivial algorithm

wheret(z) is a disjunction of (unnegated) variables and for learning monomials was recently given by Kadsial.
b € {0,1} (see Definition 6 for more details). In the proof [14]. Their algorithm learns monomials agnostically in time
of Theorem 1, each of the clause constrains will only have a20(vn), They also gave a breakthrough result for agnostic
constant number of variables and therefore our hardness relearning of halfspaces by showing a simple algorithm that
sult is equivalent to the PCP theorem (with imperfect com- for any constant > 0 agnostically learns halfspaces with
pleteness). respect to the uniform distribution up toaccuracy (both
Finally, we show that Theorems 1 and 2 can be eas-their algorithm output thresholds of parities as hypotheses).
ily used to obtain hardness of agnostic learning results for ~We also note that minimum disagreement cannot be ap-
classes richer than monomials, thereby improving on sev-proximated for classes that are known to be pmperly
eral known results and establishing hardness of agreemenlearnable i.e. when a hypothesis has to use the same repre-
max/minimization for new function classes. sentation as the class being learned (since in the usual PAC
It is important to note that our results do not rule out ag- model it is assumed that there exists a hypothesis with zero
nostic learning of monomials when the disagreement ratedisagreement rate). In particular, the minimum disagree-
is very low (i_e_g—log““” ™), weak agnostic learning with ~ ment with various classes of DNF formulae, intersections

—1 1—o0(1) .
?greemem |0Wer thaly2 + 2 . o8 " or agnostic learn- 1This problem is more commonly known as “finding the nearest code-
ing of monomials by unrestricted hypotheses. word”".




of halfspaces, decision trees, and juntas cannot be approxi-

mated [19, 1].
2 Preliminaries and Notation

For a vectorv, we denote itgth element byv; (unless
explicitly defined otherwise). For a positive integerwe
denote[m] = {1,2,...,m}. We say that a functiorf
(of any arity) isO(g), whereg is the function of the same
parameters, if there exist two constantand d such that
f<c-g-log(g).

The domain of all discussed Boolean functions is the
Boolean hypercubg0,1}". The ith literal is a function
over{0, 1}" equal to the-th coordinate of a point and de-
notedzx;, or its negation, denoteti. A monomialis a con-
junction of literals and/or constants (0 and 1). It is also
commonly referred to astarm A monotone monomial is a
monomial that includes only positive literals and constants.
We denote the function class of all monomialsMgn and
the class of all monotone monomialskfVon. A DNF for-
mula is a disjunction of terms andkaterm DNF formula is
a disjunction ofk terms. Ahalfspaceor athresholdfunc-
tion is a function equal t _, ., wiz; > 0 (as a Boolean
expression), where, . .., wg, 6 are real numbers.

2.1 The Problem

For the purposes of this discussion it suffices to define
the combinatorial optimization problem and therefore we
include the definition of the PAC agnostic learning frame-
work for reader’s convenience only.

For two Boolean functiong andh and a distributiorD
over{0,1}" we defineAp(f, h) = Prp[f # h]. Similarly,
for a class of Boolean functiors and a functionf define
Ap(f,C) = minpec{Ap(f,h)}. We say that a class is
PAC learnable in the agnostic model, if there exists an al-
gorithm that for every distributio®, Boolean functionf
ande > 0, runs in time polynomial im and1/e and, with
probability at least 1/2, produces a hypothédsisuch that
Ap(f,h) < Ap(f,C) + e. Haussler’s original definition
required that belong toC and corresponds to the approxi-
mation problems that we addrésdt is easy to see that this

For a domainD, an exampleis a pair (x,b) where

xz € Dandb € {0,1}. An example is callegositive
if b = 1, andnegativeotherwise. For a set of examples
S C D x {0,1}, we denoteST = {z | (z,1) € S}
and similarly S~ = {z | (z,0) € S}. For any func-
tion f and a set of exampleS, the agreement rateof

f with S is AgreeR (f,S) = W% where
Ty = {z | f(x) 1}. For a class of functiong§, let
AgreeR (C, S) = maxycc{AgreeR (f,5)}.

Definition 4 For a class of function§ and domainD, we
define theMlaximum AgreemenproblemC-MA as follows:
The input is a set of examplésC D x {0,1}. The prob-
lem is to find a functiork € C such thatAgreeR (h, S) =
AgreeR (C, S).

For a > 1, an a-approximation algorithm forC-
MA is an algorithm that returns a hypothedissuch that
a - AgreeR (h,S) > AgreeR (C,S). Similarly, ana-
approximation algorithm for théMinimum Disagreement
problemC-MD is an algorithm that returns a hypothesis
C such thatl — AgreeR (h, S) < a(1 — AgreeR (C, 5)).

An extension of the original agnostic learning frame-
work is the model in which a hypothesis may come from a
richer classH. The corresponding combinatorial problems
were introduced by Bshouty and Burroughs and are denoted
C/H-MA and C/H-MD [8]. Note that an approximation
algorithm for these problems can return a value larger than
AgreeR (C, S) and therefore cannot be used to approximate
even just the valudgreeR (C, 5).

Remark 5 An a-approximation algorithm fo€’-MA(MD)
whereC C C' C H is an a-approximation algorithm for
C/H-MA(MD).

2.2 Agreement with Monomials and Set
Covers

For simplicity we first consider thielMon-MA problem.
The standard reduction of the general to the monotone case
[16] implies that this problem is at least as hard to approxi-
mate adMon-MA. We will later observe that our proof will

definition is equivalent to approximating the agreement rate hold for the unrestricted case as well. We start by giving

(or the disagreement rate) within additivelt suggests two
approximation problems with more usual multiplicative fac-

tors: disagreement minimization and agreement maximiza-

tion (some authors call this versi@mo-agnostic learning

The interested reader is referred to the work of Haussler

[12], Kearnset al.[17], and Valiant [22] for more details on
the models and their relation to the optimization problems.
We now proceed to define the problems more formally.

2This representation restriction was relaxed by Keatred.[17].

two equivalent ways to formulatd Mon-MA.

Definition 6 The Maximum Monotone Clause Constraints
problem MAX-MSAT is defined as follows: The input is a
setC of monotone clauses constraintisat is, equations of
the form¢(z) = b where,t(z) is a clause without negated
variables andb € {0, 1}. The output is a point € {0, 1}"
that maximizes the number of satisfied equatior.irfror

an integer function3, MAX-B-MSAT is the same problem
with each clause containing at maBtvariables.



To see the equivalence bfMon-MA and MAX-MSAT, for 3SAT in which the verifier chooses a random clause and
let ¢; be the variable #; is present in the clausg. Then a random variable in that clause. It then gets the values of
each constraint(z) = b in MMon-MA is equivalent to all the variables in the clause from the first prover and the
V.,=ot; = 1 —b. Therefore we can interpret each point value of the chosen variable from the second prover. The
in an example as a monotone clause and the claasea verifier accepts if the clause is satisfied and the values of

pointin{0,1}". the chosen variable are consistent [4]. Feige then amplifies
Another way equivalent way to formulatdMon-MA the soundness of this proof system by repeating theftest
and the one we will be using throughout our discussion is times (based on Raz’ parallel repetition theorem [21]). Fi-
the following. nally, the consistency checks are distributedstprovers
Input: S = (ST,57,{S; Vicn), {S; }ien)) Where  with each prover getting/2 clause questions arfg2 vari-
Sf,...,SFtCcStands;,....S,; €S . able questions. This is done using an asymptotically-good
Output: A set of indices! that maximizes the sum of code withk codewords of lengtlf and Hamming weight
two values Agr — (S, 1) = |Uiel S| andAgr T(S, 1) = ¢/2. The verifier accepts if at least two provers gave con-
1S — [Use;s Si|- We denote this sum bigr (S,1) = sistent answers. More formally, for integkerand ¢ such
Agr —(S,I)+ Agr (S, I) and denote the maximum value that¢ > ¢, log k for some fixed constant, Feige defines a
of agreement bjMaxAgr(S). k-prover proof system for 3SAT-5 where:

To see that this is an equivalent formulation, $§t =
{z |z € S~ andz; = 0} andS;” = {z |z € S* andz; =
0}. Then for any set of indices C [n], the monotone ) S
monomialt; = A;crz; is consistent with all the examples eratesk queriesy; (r), ... qx(r) of lengthllog 4 / n.

n S_. that h_ave a zeroin at least one_of the Eoord_lnates 2. Given answersy, .. . a; of length2¢ from the provers,
with indices inI, that is, with examples i), _; S; . Itis

. ) i€l i V computesV; (r,a1), . .., Vi(r,ax) € [2] for fixed
also consistent with all the examplesSn that do not have function$ V... .. V.

zeros in coordinates with indicesInthatis,S ™\, ., S;*.
Therefore the number of examples with whighagrees is 3. V accepts if there exist # j such thatV;(r,a;) =
exactlyAgr (S, I). Vj(r,a;).

It is also possible to formulat&lon-MA in a similar ] _ )
fashion. We need to specify an additional bit for each vari- 4 If # € 3SAT-5, then there exist/aprover P for which

1. Given a 3CNF-5 formula overn variables, verifiel/
tosses a random stringof length/log (5n) and gen-

able that tells whether this variable is negated in the mono-  Vi(ra1) = Va(r,a2) = --- = Vi(r, ax,) with proba-
mial or not (when it is present). Therefore the formulation bility 1 (note that this is stronger than the acceptance
uses the same input and the following output. predicate above).
Outputqvlon-MA)_: A set of indicesl and a vectora € 5. If ¢ ¢ 3SAT-5, then for any?, V accepts with proba-
{0,1}" that maximizes the value bility at mostk22—<o¢ for some fixed constarat,.

Agr (S, Ia)= || )z |+t -1 ) Z |,

or ) ‘ZGUI +1871 IZLGJI | 3.2 Balanced Set Partitions

\_/vherer/_ =8 ifa; = ().andZi*/_ = SH/\SH/" _ As in Feige’s proof, the second part of our reduction is
if a; = 1. We denote the maximum value of agreement with 3 set system with certain properties tailored to be used with
a general monomial bylaxAgr (S). the equality predicate in the Feige’s proof system. Our set

system consists of two main parts. The first part is sets di-
3 Hardness of Approximating Mon-MA and vided into partitions in a way that sets in the same partition
Mon-MD are highly correlated (e.g., disjoint) and sets from different
partitions are uncorrelated. Covers by uncorrelated sets are
It is easy to see thd?!Mon-MA is similar to the SET-  balanced in the sense that they cover about the same number
COVER problem. Indeed, our hardness of approximation Of points inS* andS~ and therefore the agreement rate is
result will employ some of the ideas from Feige’s hardness close tol /2. Therefore these sets force any approximating

of approximation result for SET-COVER [9]. algorithm to use sets from the same patrtition.
The second part of our set system is a collection of uncor-
3.1 Feige’s Multi-Prover Proof System related smaller sets. These smaller sets do not substantially

influence small covers but make any cover by a large num-
Feige’s reduction from the SET COVER problem is ber of sets balanced. Therefore unbalanced covers have to
b_ase‘d ona muIti-prover. proof system for 3SAT-5. The ba- ~ 37pese functions choose a single variable from each answer to a clause
sis of the proof system is the standard two-prover protocol question.




use a small number of sets and have sets in the same parU(U
tion. Intuitively, this makes it possible to use an unbalanced
In
this sense, the addition of smaller sets is analogous to the

cover to find consistent answers to verifiers questions.

use of the random skew in thellstad’s long code test [11].
Formally, abalanced set partitio®8(m, L, M, k,~) has
the following properties:

1. There is a ground st of m points.
2. Thereis a collection of. distinct partitiong, . .., pr.

3. Fori < L, partitionp; is a collection oft disjoint sets
Bi1,...,B; C Bwhose unionis3.

. There is a collection o/ setsCy, ...
5. Letp,; =1— (1— %)*(1 — £)". Foranyl C [M]

andJ C [L] x [k] with all elements having different
first coordinate, it holds

‘(Uie] ci)U (U(m‘)ef Bi’j)’

m

7C]W-

—pral < -

To see why a balanced set partition could be useful in

proving hardnessMMon-MA, consider an instancé of
MMon-MA defined as follows. Fo#3(m, L, M, k,~y) as
above, letSt = S~ = B, S;i = Bj, andS IRE
Now for anyj € [L], and an mdexsd’g ={(j,1 )|z € [k]},
|Agr (S,1;)] > (2 — + —y)m. On the other hand, for any
index set[ that does not include two indices with the same
first coordinate, we have thatgr (S, )| < (1 + 2y)m

For sufficiently largek and sufficiently smally, this creates

a multiplicative gap o2 — e between the two cases.

3.3 Creating Balanced Set Partitions

In this section, we show a straightforward randomized

algorithm that produces balanced set partitions.

Theorem 7 There exists a randomized algorithm that
on input k, L, M,~ produces, with probability at least
%, a balanced set partition3(m, L, M, k,~) for m =

O(k?y~2log (M + L)) intimeO((M + L)m).

Proof: First we create the sef3; ;. To create each partition

j € [L], we rollm k-sided dice and denote the outcomes by
di,...,dn. SetB;; = {r | d, = i}. This clearly defines a
coIIectlon of disjoint sets whose union|is]. To createM/

setsCh,...,Cuy, for eachi € [M] and eachr € [m], we
includer in C; with probabilityk,—Q.
Now let I C [M] and J C [L] x [k] be a

set of indices with different first coordinate (correspond-
ing to sets from different partitions) and ldV

ci)U (U(irj)e] Bm-). Elements of these sets are
chosen independently and therefore for eaeh[m],

1 1
PrrelU]=1-(1- ﬁ)”'(l - %)\J\ = Pl

independently of other elements pfi].
bounds, we get that for ary> 0,

Using Chernoff

U]

Pr { — =P
m

> 5] < 9e~2mé” ,

which is exactly the property 5 of balanced set partitions
(for 6 = v). Our next step is to ensure that property 5 holds
for all possible index set$ and.J. This can be done by
first observing that it is enough to ensure that this condition
holds for§ = ~/2, [I| < k*In} and|J| < kIn}. This

is true since fofZ| > k?In 4 and everyt, pj;; > 1 — 6.
ThereforelU|/m — pjrj < 1 —pje < 0 < 7. Forthe
other side of the bound on the size of the union/ldbe a
subset ofl of sizek? ln% andU’ be the union of sets with
indices inl’ andJ. It then follows that

Ul v

- —<1- <1- )
Plle = (P21 1.0 —9)

<1-(1-08)+d5=x

The second condition|J| < kln %, is obtained analo-
gously.

There are at most/# different index setd C [M] of
size at most and at mostkL)! different index sets/ of
size at most. Therefore, the probability that property 5
does not hold is at most

((kL)kln§ +M}c21n§) . 9e—2mo*

For 9
m > 2k*y "% In (kL + M) -In = + 2,
Y

this probability is less thah/2.
We can now proceed to the reduction itself.

3.4 Main Reduction

Below we describe our main transformation from Feige’s
proof system tdVIMon-MA. To avoid confusion we de-
note the number of variables in a given 3CNF-5 formula
by d and usen to denote the number of sets in the pro-
ducedMMon-MA instance (that corresponds to the number
of variables in the original formulation).

Theorem 8 For everye > 0 (not necessarily constant),
there exists an algorithmd that given a 3CNF-5 formula
¢ overd variables, produces an instanceof MMon-MA
on base set§* and .S~ of sizeT" such that



1. Arunsintime2©® plus the time to create a balanced
set partition B(m, 2, 4¢, -, <), wherel = cilog *
for some constant; .

2. |8T| =|S7| = T = (5d)*m, wherem is the size of
the ground set of the balanced set partition.

4. If ¢ €3SAT-5, theMMaxAgr(S) > (2 — )T

5. If ¢ ¢3SAT-5, thetMMaxAgr(S) —T| <e-T.

Proof: Letk = L, v = ¢/4, andV be Feige’s veri-
fier for 3SAT-5. Giveng, we construct an instancg of
MMon-MA as follows. LetR denote the set of all possible
random strings used by, let Q; denote the set of all pos-
sible queries to proverand let4; = {0, 1} denote the
set of possible answers of proverLet L = 2¢, M = 22¢,
andB(m, L, M, k,~) be a balanced set partition. We set
St =8~ = R x B, and for every- € RandB’ C B, let

(r, B') denote the sef(r,b) | b € B'}. We now proceed to
define the sets is. Fori € [k], ¢ € Q; anda € A; we set

U " Byi(ra)i U Ca) and

(7q,a,i) =
qi(r)=q
S(fz,a-,i) - U (7, By, (r,ay.1 U Ca) -

q:(r)=q

Intuitively, setSS* (or S ) correspond to prover
responding: when presenteé W|th guegy We can also im-

mediately observe that answers from different provers that

This means that sets with indicesiirtover all the points in
S~ = R x B. Onthe other hand for eaeh

+ _
U Stumpiamons = U By a U Criaury)

i€[k] i€[k]
U CP (gi(r))

=(r, Bg(
This implies that for each only (r, B.(,1 U Cpi(qi(r))) is
covered in(r, B). By property 5 of balanced set partitions,
the size of this set is at most

1 1 1
_(1— _ <(1—1(1—=2)2
A= (1= D= ) +m <= 1= +7m
g(E +y)m < em.
This means that at mostfraction of S~
sets with indices id. Therefore

is covered by the

Agr(S,I)>(1+1—em|R|=2—-¢€)T.

O

For the case whet ¢ 3SAT-5, letl be any set of indices
for the instanceS. LetS, denote an instance 8Mon-MA
obtained by restricting to points with the first coordinate
equal tor. We denote corresponding restrictions of the base
sets byS,” and S;". It is easy to see thahgr (S,1) =
> rerAOr (S, I). We say that is goodif |Agr (S, 1) —
1| > $m, and lets denote the fraction of goods. Then it
is clear that

Agr (S, 1) < §-2T+(1—6)(1+¢/2)T <
N1 —e€/2)T

(1+¢/2426)T ,and

Agr (S.1) > (1— >(1—¢/2—6)T

are mapped to the same value (and hence cause the verifier

to accept) correspond to setsSn that are almost disjoint
and strongly overlapping sets 1. To formalize this intu-
ition, we prove the following claims.

Claim 9 If ¢ €3SAT-5, theMMaxAgr(S) >
T =m|R).

(2 —¢€)T for

Proof: Let P be thek-prover that always answers consis-
tently and letP;(a) denote the answer of thiéh prover to
guestiona. Now consider the set of indices

I'={(q,Pi(q),1) | i€ [k], g € Qi} .

For each € R, the proverP satisfies

Vi(r, Pi(qi(r))) =Va(r, Pa(q2(r))) =
=Vi(r, Pr(qr(r))) = c(r) .
Therefore,
U Saorriaens € U 02 Benyi) = (n.B).
i€ (k] i€[k]

Hence

|Agr (S, 1) @)

Claim 10 There exists a proveP that will make the veri-
fier V accept with probability at least(k? In %)—2

—T| < (e/2 + 26)T.

Proof: We defineP with the following randomized strat-
egy. Letg be a question to provei. Define Af] =
{a | (¢,a,i) € I} and P; to be the prover that presented
with ¢ answers with a random element froﬁr@. We show
that properties oB imply that there exist andj such that
a; € Aq ()1 @5 € Ay, @NAVi(r, a;) = Vj(r,a;). To see
this, denote/’ = {V( ) |a € Ai}. Then

Agr=(S,,I) =S, m( U S(qm))
(q,a,0)€l
= J s Ul U ¢
i€lk], jeV} i€[k], ac Al

i(r) a;(m)



Now, if for all i # j, Vq’i(r) N Vq " = ¢, then all ele-
ments in seti/qll( e ti(r) are distinct and therefore by

property 5 of balanced set partitions,

7(‘57‘71)_ 1 1 t

Agr
— 5 (1 — = <

m

wheres = | Ui

Al landt =37 V) - Simi-
larly,

Agr T(S,, 1) =m—|S; N

U Sqw)

(q,a,i)el

-l U mUl U @
i€lk], jEV () i€[k], aGA; )
and therefore
Agr T(S,, 1) 1 1
—= P (1-=)1-)<
2D g pra- s

This implies thatAgr (S,,I) — m| < 2ym = §m, contra-
dicting the assumption thatis good Hence, let andj’
be the indices for WhlchZ oy D V () # (. To analyze

that a prover can return (bothl| and|Q| are equal for all
the provers). Therefore, by the properties of Feige’s proof

systempy = %(4\/§ -d)*. i

An important property of this reduction is that all the sets
that are createcﬁ” ) have size at most|Q||B|, where
|Q| is the number of possrble queries to a prover (it is the
same for all the provers). Hence each set covers at most
€|@Q]/|R| < e fraction of all the points. This implies that
a monomial with a negated variable will be negative on all
but fractione of all the positive examples and will be con-
sistent with all but at most fractionof all the negative ex-
amples. In other words, a non-monotone monomial will
always agree with at least — ¢)T examples and at most
(1+ ¢)T examples.

Corollary 11 Theorem 8 holds even when the outfSuis
an instance oMon-MA, that is, withMaxAgr (S) in place
of MMaxAgr(S).

Remark 12 For eachr € R andb € B, (r, B) belongs

to at mostk - M = poly(L) sets inS. This means that
in the MMon-MA instance each example will hapely( )
zeros. This, in turn, |mpI|es that an equivalent instance of
MAX-MSAT will havepoly(1) variables in each clause.

the success probability of the defined strategy, we observe3-5 Results and Applications

thatif s > k%In 2, then(1 — ;%)® < £ and consequently

i€[k], aeA; -
ThereforeAgr *(S,,I) < (£ —v)m andAgr —(S,,I) >
(1 — ¢ — v)m. Altogether, this would again imply that
IAQr (S, 1) —m| < (§ 4+ v)m = §, contradicting the
assumption that is good.

Foralli € [k], |Afh(r)| < s < k?*In2. Inparticular, with
probability at leastk®In 4)~2, P, will choosea; andP;:
will choosea ;s such thatV;, (r,a;) = Vj/(r,a;), causing
V to accept. As this happens for all goed, the success
probability of P is at leas® (k% In 2) =2, )

Using the bound on the soundnessigf Claim 10 im-
plies thats(k?In 4) =2 < k2270f, or§ < (k31In 2)22-<f,
Thus for

)

we getd < . We setc; to be at least as large ag(con-
stant defined in Section 3.1). For< { equation 1 gives
|Agr (S,I)—T| < €T'. The total number of sets used in the
reduction (which corresponds to the number of variables
isk - |Q - |A| where|Q| is the number of different queries
that a prover can get afjd | is the total number of answers

1
=L g( (k:‘31n ) ) < eplog =
Co €

We are now ready to use the reduction from Section 3.4
with balanced set partitions from Section 3.3 to prove our
main theorems.

Theorem 13 (same as 1)or every constante¢ > 0,
MMon/Mon-MA is NP-hard to approximate within a fac-
torof 2 — €.

Proof: We use Theorem 8 far = €//2. Thenk, ~, and/¢
are constants and therefoém, 2¢,4¢, ., <) can be con-
structed in constant randomized time. The reduction creates
an instance olMon-MA of size polynomial ind and runs in
time d°“) = poly(d). By derandomizing the construction
of B in a trivial way, we get a deterministic polynomial-
time reduction that produces a gapg\Wlon-MA instances of
1 +6 > 2 — m|
Furthermore, Remark 12 implies that for any constant
there exists a constatit such that MAX-B-MSAT isNP-
hard to approximate withit — ¢. This formulation im-
plies the PCP theorem with imperfect completeness (as in
the case of parities, if all the monotone clause constraints
are satisfiable then the solution is easy to find).
Theorem 1 can be easily extended to subconsgtant

Theorem 14 (same as 2for any constantA > 0,
there is no polynomial-time algorithm that approximates
MMon/Mon-MA within a factor of2 — 2= 108" *n unless
NP C RTIME(npotyvlos(n)),



Proof: We use Theorem 8 withl = 2~'°8" 4 for somer Corollary 18 For every constantk and ¢ > 0,
to be specified later. Theln= 4 - 2l°8" 4, ~ = 2~ 1og"d /4 MMon/THyy (Mon)-MA is NP-hard to approximate within
and? = ¢; - log” d. ThereforeB(m,2¢,4¢, L. <) canbe  afactorofl + 3 —e.

s 4’0 4
constructed in polynomial if'°e" ¢ randomized time and
m= szlog 4. The rest of the reduction takes ti?8) = proof: The reduction in Theorem 1 proves hardness of
2 (logyd) and ‘Cfeétﬁsd an instance ldMon-MA over n = distinguishing instances ®flMon-MA with the maximum
deaioe @ = 2% ¢ “variables. Therefore, for = 3, agreement rate being> 1 — < and instances for which
_ 1— ’ . . .
¢ <27los g lr—1/2| < 5. If there exists an algorithm that, given sam-

It is easy to see that the gap in the agreement rate be'ple withr > 1_%, can produce a functiofi € THy (Mon)

Meenll/;fgand}ﬂ + eimplies a gap in the_ disagreement o ., thatf agrees with at leag{’ + ¢’ fraction of exam-
rate of ~=— > 5 (for small enough). Thatis, we getthe g then, by Lemma 16, one of the monomials used by
following multiplicative gap for approximatiniylon-MD. has agreement raté that satisfies

Corollary 15 (same as 3)For any constantA > 0, . ,
there is no polynomial time algorithm that approximates I — }| 10w+l 1= (g — €)W +1)
MMon/Mon-MD within a factor of21°s' " unlessNP C

2~ 2W - 2W

RTIME (npolylog(m), W 1) €
TToaw T2

A simple application of these results is hardness of ap-

proximate agreement maximization with function classes Therefore MMon /THyy (Mon)-MA cannot be approxi-

richer than monomials. More specifically, létbe a class  mated within—1=¢— > 1 + L — ¢ for an appropriate

that includes monotone monomials. Assume that for ev- . . wrrte

ery f € C such thatf has high agreement with the sam- choice ofe’. =

ple, one can extract a monomial with “relatively” high _ A k-term DNF can be expresses &3 ,(Mon).

agreement. Then we could approximate the agreement orl herefore Corollary 18 improves the best known inapprox-

the disagreement rate with monomials, contradicting The-imability factor for (2-term DNF)-MA fromsg — ¢ [8] to

orems 1 and 2. A simple and, in fact, the most general 4/3 — € and gives the first results on hardness of agree-

class with this property, is the class of threshold functions Ment maximization with thresholds of any constant number

with low integer weights. Let Tk (C) denote the class  ©f terms.

of all functions equal ta; + 3sign (3, ., wi(2f; — 1)),

where k,wy, ..., wy are integer,> ., |w;| < W, and

fi,---, frx € C (this definition of a threshold function is

simply sign (3", w;fi) when f; and the resulting func-

4 Discussion and Further Work

tion are in the rangé—1,+1}). The following lemma is While this work resolves approximation complexity of
a straightforward generalization of a simple lemma due to the maximum agreement problem for monomials, several
Goldmanret al.[10] (the original version is fod = 0). guestions remain open for other simple function classes.

Most notably, the best inapproximability factor known for
halfspaces i§§, while no approximation algorithms achiev-
ing better thar{2 — log n/n)-approximation are known [8].

It would also be interesting to see whether the construc-
tion of balanced set partitions can be derandomized. We
remark that derandomizing this construction would, in par-
Proof: Let D’ be the distributiorD conditioned onyf () = ticular, produce a bipartite expander graph with almost op-
g(z). By the definition ofD’, Prp/[f = g] = 1. We can  timal expansion factor.
therefore apply the original lemma and get that there exists
h € C such thaPrp/[h = g] — 1/2| > 5. Therefore
[Prplh =g] - 1/2 > 22040,

Hence we obtain the following results.

Lemma 16 Let C be a class of functions and let <
THw (C). If for some functiong and distribution D,
Prp[f = ¢g] > 1 — 4, then for one of the input func-
tions h € C to the threshold functiorf, it holds that
[Prpfh = g] - 1/2 > =207,
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