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Abstract

We study differentially private (DP) algorithms for stochastic convex optimization: the prob-
lem of minimizing the population loss given i.i.d. samples from a distribution over convex loss
functions. A recent work of Bassily et al. (2019) has established the optimal bound on the excess
population loss achievable given n samples. Unfortunately, their algorithm achieving this bound
is relatively inefficient: it requires O(min{n3/2, n5/2/d}) gradient computations, where d is the
dimension of the optimization problem.

We describe two new techniques for deriving DP convex optimization algorithms both achiev-
ing the optimal bound on excess loss and using O(min{n, n2/d}) gradient computations. In
particular, the algorithms match the running time of the optimal non-private algorithms. The
first approach relies on the use of variable batch sizes and is analyzed using the privacy am-
plification by iteration technique of Feldman et al. (2018). The second approach is based on a
general reduction to the problem of localizing an approximately optimal solution with differen-
tial privacy. Such localization, in turn, can be achieved using existing (non-private) uniformly
stable optimization algorithms. As in the earlier work, our algorithms require a mild smoothness
assumption. We also give a linear-time algorithm achieving the optimal bound on the excess
loss for the strongly convex case, as well as a faster algorithm for the non-smooth case.
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1 Introduction

Stochastic convex optimization (SCO) is the problem of minimizing the expected loss (also referred
to as population loss) F (w) = Ex∼P [f(w, x)] for convex loss functions of w over some d-dimensional
convex body K given access to i.i.d. samples x1, . . . , xn from the data distribution P. The perfor-
mance of an algorithm for the problem is measured by bounding the excess (population) loss of a
solution w, that is the value F (w)−minv∈K F (v). This problem is central to numerous applications
in machine learning and arises for example in least squares/logistic regression, or minimizing a con-
vex surrogate loss for a classification problem. It also serves as the basis for the development of
continuous optimization algorithms in the non-convex setting. In this work we study this problem
with the constraint of differential privacy with respect to the set of samples [DMNS06].

Placing a differential privacy constraint usually comes at a cost in terms of utility. In this
case, it is measured by the excess population loss of the solution, for a given number of samples
n. Additionally, runtime efficiency of an optimization method is crucial for modern applications on
large high-dimensional datasets, and this is the primary reason for the popularity of stochastic gra-
dient descent-based methods. This motivates the problem of understanding the trade-offs between
computational efficiency, and excess population loss in the presence of privacy constraints.

Differentially private convex optimization is one of most well-studied problems in private data
analysis [CM08, CMS11, JKT12, KST12, ST13, SCS13, DJW13, Ull15, JT14, BST14, TTZ15,
STU17, WLK+17, WYX17, INS+19]. However, most of the prior work focuses on the easier problem
of minimizing the empirical loss F̂ (w) = 1

n

∑
i f(w, xi) (referred to as empirical risk minimization

(ERM)) for which tight upper and lower bounds on the excess loss are known in a variety of
settings. Upper bounds for the differentially private ERM can be translated to upper bounds on
the population loss by appealing to uniform convergence of empirical loss to population loss, namely
an upper bound on supw∈K(F (w)− F̂ (w)). However, in general,1 this approach leads to suboptimal
bounds: it is known that there exist distributions over loss functions over Rd for which the best
bound on uniform convergence is Ω(

√
d/n) [Fel16]. As a result, in the high-dimensional settings

often considered in modern ML (when n = Θ(d)), bounds based on uniform convergence are Ω(1)
and do not lead to meaningful bounds on population loss.

The first work to address the population loss for SCO with differential privacy (DP-SCO) is
[BST14] who give a bound of order max{d1/4

/√
n, ε−1

√
d
/
n} [BST14, Sec. F].2 For the most rele-

vant case where d = Θ(n) and ε = Θ(1), this results in a bound of Ω(n−1/4) on excess population
loss. More recent work of Bassily et al. [BFTT19] demonstrates the existence of an efficient algo-
rithm that achieves a bound of O(1

/√
n + ε−1

√
d
/
n), which is also shown to be tight. Notably,

this bound is comparable to the non-private SCO bound of O(1/
√
n) as long as d/ε2 = O(n).

Their algorithm is based on solving the ERM via noisy stochastic gradient descent (SGD) [BST14]
but requires relatively large batch sizes for the privacy analysis. As a result, their algorithm uses
O(min{n3/2, n5/2

/
d}) gradient computations. This is substantially less efficient than the optimal

non-private algorithms for the problem which require only n gradient evaluations. They also give
a near-linear-time algorithm under an additional strong assumption that the Hessian of each loss
function is rank-1 over the entire domain.

Along the other axis, several of the aforementioned works on private ERM [WLK+17, WYX17,

1At the same time, uniform convergence suffices to derive optimal bounds on the excess population loss in a
number of special cases, such as regression for generalized linear models.

2For clarity, in the introduction we focus on the dependence on d, n and ε for (ε, δ)-DP, suppressing the dependence
on δ and on parameters of the loss function such as Lipschitz constant and the diameter of K.
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INS+19] are geared towards finding computationally efficient algorithms for the problem, often at
the cost of worse utility bounds.

We describe two new techniques for deriving linear-time algorithms that achieve the (asymptot-
ically) optimal bounds on the excess population loss. Thus our results show that for the problem of
Stochastic Convex Optimization, under mild assumptions, a privacy constraint come for free. For
d ≤ n, there is no overhead in terms of either excess loss or the computational efficiency. When
d ≥ n, the excess loss provably increases, but the optimal bounds can still be achieved without any
computational overhead. Unlike the earlier algorithm [BFTT19] that solves the ERM and relies
on uniform stability of the algorithm to ensure generalization, our algorithms directly optimize the
population loss.

Formally, our algorithms satisfy the following bounds:

Theorem 1.1. Let K ⊆ Rd be a convex set of diameter D and {f(·, x)}x∈X be a family of convex
L-Lipschitz and β-smooth functions over K. For every ρ > 0, there exists an algorithm A that
given a starting point w0 ∈ K, and S ∈ X n returns a point ŵ. For all α ≥ 1, A uses n evaluations
of the gradient of f(w, x) and satisfies

(
α, αρ2/2

)
-RDP as long as β ≤ c LD min(

√
n, ρn/

√
d), where

c is a universal constant. Further, if S consists of samples drawn i.i.d. from a distribution P over
X , then

E[F (ŵ)] ≤ F ∗ +O

(
DL ·

(
1√
n

+

√
d

ρn

))
,

where, for all w ∈ K, F (w)
.
= Ex∼P [f(w, x)], F ∗

.
= minw∈K F (w) and the expectation is taken over

the random choice of S and randomness of A.

Our guarantees are stated in terms of Rényi differential privacy (RDP) [Mir17] for all or-
ders α and can also be equivalently stated as 0-mean (ρ2/2)-concentrated differential privacy
(or (ρ2/2)-zCDP) [BS16]. Standard properties of RDP/zCDP imply that our algorithms satisfy
(2ρ
√

ln(1/δ), δ)-DP for all δ > 0 as long as ρ ≤
√

ln(1/δ). Thus for (ε, δ)-DP our bound is

E[F (ŵ)] ≤ F ∗ +O

(
DL ·

(
1√
n

+

√
d ln(1/δ)

εn

))
,

matching the tight bound in [BFTT19]. We now overview the key ideas and tools used in these
techniques.

Snowball-SGD: Our first algorithm relies on a one-pass noisy SGD with gradually growing batch
sizes. Namely, at step t out of T the batch size is proportional to 1/

√
T − t+ 1. We refer to SGD

with such schedule of batch size as Snowball-SGD. The analysis of this algorithm relies on two tools.
The first one is privacy amplification by iteration [FMTT18]. This privacy amplification technique
ensures that for the purposes of analyzing the privacy guarantees of a point xi used at step t one
can effectively treat all the noise added at subsequent steps as also added to the gradient of the loss
at xi. A direct application of this technique to noisy SGD results in different privacy guarantees
for different points [FMTT18] and, as a result, the points used in the last o(n) steps will not have
sufficient privacy guarantees. However, we show that by increasing the batch size in those steps we
can achieve the optimal privacy guarantees for all the points.

A limitation of relying on this analysis technique is that the privacy guarantees apply only to
the algorithm that outputs the last iterate of SGD. In contrast, the optimization guarantees usually
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apply to the average of all the iterates (see Section 6 for an example in which the privacy guarantees
for the average iterate are much worse than those for the last iterate). Thus the second tool we
rely on is the recent work of Jain et al. [JNN19] showing that, for an appropriate choice of step
sizes in SGD, the last iterate has the (asymptotically) optimal excess population loss. (Without
the special step sizes the last iterate has excess loss larger by a log n factor [SZ13, HLPR19].) See
Section 3 for additional details of this approach.

No Privacy Amplification for the Average Iterate: It is natural to ask if the last iterate
analysis is really needed or if the average iterate itself be proven to have good privacy properties.
In Section 6, we address this question and show that in general the average iterate can be very
non-private even when the noise is sufficient to give strong privacy guarantees for the last iterate.

Localization: Our second approach is based on an (implicit) reduction to an easier problem
of localizing an approximate minimizer of the population loss. Specifically, the reduction is to a
differentially private algorithm that given a point w0 that is within distance R from the minimizer
of the loss, finds a point ŵ that is within distance R/2 from a point that approximately minimizes
the loss. By iteratively using such a localizing algorithm with appropriately chosen parameters, a
sufficiently good solution will be found after a logarithmic number of applications of the algorithm.
Each application operates on its own subset of the dataset and thus this reduction preserves the
privacy guarantees of the localizing algorithm.

A simple way to implement a localization algorithm is to start with non-private SCO algorithm
whose output has optimal L2 sensitivity. Namely, solutions produced by the algorithm on any
two datasets that differ in one point are at distance on the order of R/

√
n (this property is also

referred to as uniform stability in the parameter space). Given such an algorithm one can simply
add Gaussian noise to the output. This is a standard approach to differentially private optimization
referred to as output perturbation [CMS11, WLK+17]. However, for the purposes of localization,
we only need to be within R/2 of the solution output by the algorithm and so we can add much more
noise than in the standard applications, thereby getting substantially better privacy guarantees.

We note that in order to ensure that the addition of Gaussian noise localizes the solution with
probability at least 1 − α we would need to increase the noise variance by an additional ln(1/α)
factor making the resulting rate suboptimal by a logarithmic factor. Thus, instead we rely on the
fact that for algorithms based on SGD the bound on excess loss can be stated in terms of the second
moment of the distance to the optimum.

We can now plug in existing uniformly stable algorithms for SCO. Specifically, it is known that
under mild smoothness assumptions, one-pass SGD finds a solution that both achieves optimal
bounds on the excess population loss and stability [HRS15, FV19]. This leads to the second
algorithm satisfying the guarantees in Theorem 1.1. See Section 4 for additional details of this
approach.

Non-smooth case: Both of our algorithms require essentially the same and relatively mild
smoothness assumption: namely that the smoothness parameter is at most

√
n (ignoring the scal-

ing with D,L and for simplicity focusing on the case when d = O(n) and ε = 1). Bassily et
al. [BFTT19] show that optimal rates are still achievable even without this smoothness assump-
tion. Their algorithm for the problem relies on using the prox operator instead of gradient steps

3



which is known to be equivalent to gradient steps on the loss function smoothed via the Moreau-
Yosida envelope. Unfortunately, computing the prox step with sufficient accuracy requires many
gradient computations and very high accuracy is needed due to potential error accumulation. As
a result, implementing the algorithm in [BFTT19] requires O(n4.5) gradient computations.

Our reduction based technique gives an alternative and simpler way to deal with the non-smooth
case. One can simply plug in a uniformly stable algorithms for SCO in the non-smooth case from
[SSSSS10]. This algorithm relies on solving ERM with an added strongly convex λ‖w‖22 term. In
this case the analysis of the accuracy to which the ERM needs to be solved is straightforward.
However achieving such accuracy with high probability requires O(n2) gradient computations thus
giving an O(n2) algorithm for the non-smooth version of our problem. Improving this running time
is a natural avenue for future work. We remark that finding a faster uniformly stable (non-private)
SCO for the non-smooth case is an interesting problem in itself.

Strongly convex case: When the loss functions are strongly convex, the optimal (non-private)
excess population loss is of the order of O(1/n) rather than O(1/

√
n). The excess loss due to

privacy is known to be Ω(d/ε2n2). The best known upper bounds for this problem due to [BST14]
are O(

√
d/εn). We show a nearly linear time algorithm that has excess loss matching the known

lower bounds. As in the convex case, when d ≤ n, privacy has virtually no additional cost in terms
of utility or efficiency. We describe several approaches that achieve these bounds (up to, possibly, a
logarithmic overhead). The first approach is based on a folklore reduction to the convex case which
can then be used with any of our algorithms for the (non-strongly-convex) convex case. We also
give two direct algorithms that rely on a new analysis of SGD with fixed step-size in the strongly
convex case. The first algorithm uses iterative localization approach and the second one relies on
privacy amplification by iteration.

2 Preliminaries

2.1 Convex Loss Minimization

Let X be the domain of data sets, and P be a distribution over X . Let S = (x1, . . . , xn) be a
dataset drawn i.i.d. from P. Let K ⊆ Rd be a convex set denoting the space of all models. Let
f : K × X → R be a loss function, which is convex in its first parameter (the second parameter is
a data point and dependence on this parameter can be arbitrary). The excess population loss of
solution w is defined as

Ex∼P [f(w, x)]−min
v∈K

Ex∼P [f(v, x)] .

In order to argue differential privacy we place certain assumptions on the loss function. To that
end, we need the following two definitions of Lipschitz continuity and smoothness.

Definition 2.1 (L-Lipschitz continuity). A function f : K → R is L-Lipschitz continuous over the
domain K ⊆ Rd if the following holds for all w,w′ ∈ K: |f(w)− f(w)| ≤ L ‖w − w′‖2.

Definition 2.2 (β-smoothness). A function f : K → R is β-smooth over the domain K ⊆ Rd if
for all w,w′ ∈ K, ‖∇f(w)−∇f(w′)‖2 ≤ β ‖w − w′‖2.
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2.2 Probability Measures

In this work, we will primarily be interested in the d-dimensional Euclidean space Rd endowed with
the `2 metric and the Lebesgue measure. We say a distribution µ is absolutely continuous with
respect to ν if µ(A) = 0 whenever ν(A) = 0 for all measurable sets A. We will denote this by
µ� ν.

Given two distributions µ and ν on a Banach space (Z, ‖ · ‖), one can define several notions of
distance between them. The primary notion of distance we consider is Rényi divergence:

Definition 2.3 (Rényi Divergence [Rén61]). Let 1 < α < ∞ and µ, ν be measures with µ � ν.
The Rényi divergence of order α between µ and ν is defined as

Dα(µ ‖ ν)
.
=

1

α− 1
ln

∫ (
µ(z)

ν(z)

)α
ν(z) dz.

Here we follow the convention that 0
0 = 0. If µ 6� ν, we define the Rényi divergence to be ∞.

Rényi divergence of orders α = 1,∞ is defined by continuity.

2.3 (Rényi ) Differential Privacy

The notion of differential privacy is by now a de facto standard for statistical data privacy [DMNS06,
Dwo06, DR14].

Definition 2.4 ([DMNS06, DKM+06]). A randomized algorithm A is (ε, δ)-differentially private
((ε, δ)-DP) if, for all datasets S and S′ that differ in a single data element and for all events O in
the output space of A, we have

Pr[A(S) ∈ O] ≤ eε Pr[A(S′) ∈ O] + δ.

Starting with Concentrated Differential Privacy [DR16], definitions that allow more fine-grained
control of the privacy loss random variable have proven useful. The notions of zCDP [BS16],
Moments Accountant [ACG+16], and Rényi differential privacy (RDP) [Mir17] capture versions of
this definition. This approach improves on traditional (ε, δ)-DP accounting in numerous settings,
often leading to significantly tighter privacy bounds as well as being applicable when the traditional
approach fails [PAE+17, PSM+18].

Definition 2.5 ([Mir17]). For 1 ≤ α ≤ ∞ and ε ≥ 0, a randomized algorithm A is (α, ε)-
Rényi differentially private, or (α, ε)-RDP if for all neighboring data sets S and S′ we have

Dα

(
A(S)

∥∥ A(S′)
)
≤ ε.

The following two lemmas allow translating Rényi differential privacy to (ε, δ)-differential pri-
vacy, and give a composition rule for RDP.

Lemma 2.6 ([Mir17, BS16]). If A satisfies (α, ε)-Rényi differential privacy, then for all δ ∈ (0, 1)

it also satisfies
(
ε+ ln(1/δ)

α−1 , δ
)
-DP. In particular, if A satisfies (α, αρ2/2)-RDP for every α ≥ 1 then

for all δ ∈ (0, 1) it also satisfies (ρ2/2 + ρ
√

2 ln(1/δ), δ)-DP.

The standard composition rule for Rényi differential privacy, when the outputs of all algorithms
are revealed, takes the following form.

Lemma 2.7 ([Mir17]). If A1, . . . ,Ak are randomized algorithms satisfying, respectively, (α, ε1)-
RDP,. . . ,(α, εk)-RDP, then their composition defined as (A1(S), . . . ,Ak(S)) is (α, ε1 + · · · + εk)-
RDP. Moreover, the i’th algorithm can be chosen on the basis of the outputs of A1, . . . ,Ai−1.
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2.4 Contractive Noisy Iteration

We start by recalling the definition of a contraction.

Definition 2.8 (Contraction). For a Banach space (Z, ‖ · ‖), a function ψ : Z → Z is said to be
contractive if it is 1-Lipschitz. Namely, for all x, y ∈ Z,

‖ψ(x)− ψ(y)‖ ≤ ‖x− y‖.

A canonical example of a contraction is projection onto a convex set in the Euclidean space.

Proposition 2.9. Let K be a convex set in Rd. Consider the projection operator:

ΠK(x)
.
= arg min

y∈K
‖x− y‖.

The map ΠK is a contraction.

Another example of a contraction, which will be important in our work, is a gradient descent step
for a smooth convex function. The following is a standard result in convex optimization [Nes04].

Proposition 2.10. Suppose that a function f : Rd → R is convex and β-smooth. Then the function
ψ defined as:

ψ(w)
.
= w − η∇wf(w)

is contractive as long as η ≤ 2/β.

We will be interested in a class of iterative stochastic processes where we alternate between
adding noise and applying some contractive map.

Definition 2.11 (Contractive Noisy Iteration (CNI)). Given an initial random state X0 ∈ Z, a
sequence of contractive functions ψt : Z → Z, and a sequence of noise distributions {Dt}, we define
the Contractive Noisy Iteration (CNI) by the following update rule:

Xt+1
.
= ψt+1(Xt) + Zt+1,

where Zt+1 is drawn independently from Dt+1. For brevity, we will denote the random variable
output by this process after T steps as CNIT (X0, {ψt}, {Dt}).

As usual, we denote by µ ∗ ν the convolution of µ and ν, that is the distribution of the sum
X + Y where we draw X ∼ µ and Y ∼ ν independently.

Definition 2.12. For a noise distribution D over a Banach space (Z, ‖ · ‖) we measure the mag-
nitude of noise by considering the function that for a > 0, measures the largest Rényi divergence of
order α between D and the same distribution D shifted by a vector of length at most a:

Rα(D, a)
.
= sup

x : ‖x‖≤a
Dα(D ∗ x ‖ D).

We denote the standard Gaussian distribution over Rd with variance σ2 by N (0, σ2Id). By
the well-known properties of Gaussians, for any x ∈ Rd, and σ, Dα

(
N (0, σ2Id)

∥∥ N (x, σ2Id)
)

=

α‖x‖22/2σ2. This implies that in the Euclidean space, Rα(N (0, σ2Id), a) = αa2

2σ2 .
When U and V are sampled from µ and ν respectively, we will often abuse notation and write

Dα(U ‖ V ).
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2.5 Privacy Amplification by Iteration

The main result in [FMTT18] states that

Theorem 2.13. Let XT and X ′T denote the output of CNIT (X0, {ψt}, {Dt}) and CNIT (X0, {ψ′t},
{Dt}). Let st

.
= supx ‖ψt(x)− ψ′t(x)‖. Let a1, . . . , aT be a sequence of reals and let zt

.
=
∑

i≤t si −∑
i≤t ai. If zt ≥ 0 for all t, then

Dα

(
XT

∥∥ X ′T ) ≤ T∑
t=1

Rα(Dt, at).

We now give a simple corollary of this general theorem for the case when the iterative processes
differ in a single index and, in addition, the noise distribution with parameter σ ensures that
Rényi divergence for a shift of a scales as a2/σ2. As discussed above, this is exactly the case for
Gaussian distribution.

Corollary 2.14. Let XT and X ′T denote the output of CNIT (X0, {ψt}, {Dt}) and CNIT (X0, {ψ′t},
{Dt}). Let si

.
= supx ‖ψi(x) − ψ′i(x)‖. Assume that there exists t ∈ [T ] such that for all i 6= t,

si = 0. For α ≥ 1 assume that there exists γ such that for every ζ > 0 and a ≥ 0, and i ∈ [T ],

Rα(Di, a) ≤ γ a2
σ2
i

for some σi. Then

Dα

(
XT

∥∥ X ′T ) ≤ γ s2t∑T
i=t σ

2
i

.

Proof. We use Theorem 2.13 with ai = 0 for i < t and ai =
stσ2

i∑T
v=t σ

2
v

. The resulting bound we get

Dα

(
XT

∥∥ X ′T ) ≤ T∑
i=t

γ
a2i
σ2i

=
T∑
i=t

γ

(
stσ

2
i∑T

i=t σ
2
i

)2

· 1

σ2i
= γs2t

T∑
i=t

σ2i(∑T
i=t σ

2
i

)2 = γ
s2t∑T
i=t σ

2
i

.

3 DP SCO via Privacy Amplification by Iteration

We start by describing a general version of noisy SGD and analyze its privacy using the privacy
amplification by iteration technique from [FMTT18]. Recall that in our problem we are given a
family of convex loss functions over some convex set K ⊆ Rd parameterized by x ∈ X , that is f(w, x)
is convex and differentiable in the first parameter for every x ∈ X . Given a dataset S = (x1, . . . , xn),
starting point w0, a number of steps T , batch size parameters B1, . . . , BT such that Bt are positive
integers and

∑
t∈[T ]Bt = n, step sizes η1, . . . , ηT , and noise scales σ1, . . . , σT the algorithm works as

follows. Starting from w0 ∈ K perform the following update vt+1
.
= wt − ηt+1(∇wFt+1(wt) + ξt+1)

and wt+1
.
= ΠK(vt+1), where (1) Ft+1 is the average of loss functions for samples in batch t + 1,

that is

Ft+1(w)
.
=

1

Bt+1

i=
∑

s≤t+1Bs∑
i=1+

∑
s≤tBs

f(w, xi);

(2) ξt+1 is a freshly drawn sample from N (0, σ2t+1Id); and (3), ΠK denotes the Euclidean projection
to set K. We refer to this algorithm as PNSGD(S,w0, {Bt}, {ηt}, {σt}) and describe it formally in
Algorithm 1. For a value a we denote the fixed sequence of parameters (a, . . . , a) of length T by
{a}.
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Algorithm 1 Projected noisy stochastic gradient descent (PNSGD)

Input: Data set S = {x1, . . . , xn}, f : K×X → R a convex function in the first parameter, starting
point w0 ∈ K, batch sizes {Bt}, step sizes {ηt}, noise parameters {σt}.

1: for t ∈ {0, . . . , n− 1} do
2: vt+1 ← wt − ηt+1(∇wFt+1(wt)) + ξt+1), where ξt+1 ∼ N (0, σ2t+1Id).
3: wt+1 ← ΠK (vt+1), where ΠK(w) = arg minθ∈K ‖θ − w‖2 is the `2-projection on K.
4: return the final iterate wn.

3.1 Privacy Guarantees for Noisy SGD

As in [FMTT18], the key property that allows us to treat noisy gradient descent as a contractive
noisy iteration is the fact that for any convex function, a gradient step is contractive as long as
the function satisfies a relatively mild smoothness condition (see Proposition 2.10). In addition,
as is well known, for any convex set K ∈ Rd, the (Euclidean) projection to K is contractive (see
Proposition 2.9). Naturally, a composition of two contractive maps is a contractive map and
therefore we can conclude that PNSGD(S,w0, {Bt}, {ηt}, {σt}) is an instance of contractive noisy
iteration. More formally, consider the sequence v0 = w0, v1, . . . , vn. In this sequence, vt+1 is
obtained from vt by first applying a contractive map that consists of projection to K followed by
the gradient step at wt and then addition of Gaussian noise of scale ηt+1 · σt+1. Note that the final
output of the algorithm is wn = ΠK(vn) but it does not affect our analysis of privacy guarantees
as it can be seen as an additional post-processing step.

More formally, for this algorithm we prove the following privacy guarantees.

Theorem 3.1. Let K ⊆ Rd be a convex set and {f(·, x)}x∈X be a family of convex L-Lipschitz
and β-smooth functions over K. Then, for every batch-size sequence {Bt}t∈[T ], step-size sequence
{ηt}t∈[T ] such that ηt ≤ 2/β for all t ∈ [T ], noise parameters {σt}t∈[T ], α ≥ 1, starting point
w0 ∈ K, and S ∈ X n, PNSGD(S,w0, {Bt}, {ηt}, {σt}) satisfies

(
α, α · ρ2/2

)
-RDP, where

ρ = 2L ·max
t∈[T ]

 ηt

Bt

√∑T
s=t η

2
sσ

2
s

 .

Proof. For k ∈ [n], let S
.
= (x1, . . . , xn) and S′

.
= (x1, . . . , xk−1, x

′
k, xk+1, . . . , xn) be two arbitrary

datasets that differ at index k and let t be the index of the batch in which k-th example is used
by PNSGD with batch-size sequence {Bt}t∈[T ]. Note that each Ft is an average of β-smooth,
L-Lipschitz convex functions and thus is itself β-smooth, L-Lipschitz and convex over K. Thus,
as discussed above, under the condition ηt ≤ 2/β, the steps of PNSGD(S,w0, {Bt}, {ηt}, {σt})
are a contractive noisy iteration. Specifically, on the dataset S, the CNI is defined by the initial
point w0, sequence of functions gt(w)

.
= ΠK(w)−ηt∇Ft(ΠK(w)) and sequence of noise distributions

Dt = N (0, (ηtσt)
2Id). Similarly, on the dataset S′, the CNI is defined in the same way with the

exception of g′t(w)
.
= ΠK(w)− ηt∇F ′t(ΠK(w)), where F ′t includes loss function for x′k instead of xk.

Namely, F ′t(w) = F ′t(w) + (f(w, x′k)− f(w, xk))/Bt.
By our assumption, f(w, x) is L-Lipschitz for every x ∈ X and w ∈ K and therefore

sup
w
‖gt(w)− g′t(w)‖2 =

ηt
Bt

sup
w
‖∇f(ΠK(w), xk)−∇f(ΠK(w), x′k)‖2 ≤

2ηtL

Bt
.

8



We can now apply Corollary 2.14 with γ = α/2. Note that st ≤ 2ηtL
Bt

and thus we obtain that

Dα

(
Xn

∥∥ X ′n) ≤ α

2
· 4L2η2t
B2
t

· 1∑T
s=t η

2
sσ

2
s

=
2αL2η2t

B2
t ·
∑T

s=t η
2
sσ

2
s

.

Maximizing this expression over all indices i ∈ [n] gives the claim.

The important property of this analysis is that it allows for batch size to be used to improve
the privacy guarantees. The specific batch size choice depends on the step sizes and noise rates.
Next we describe the setting of these parameters that ensures convergence at the optimal rate.

3.2 Utility Guarantees for the Last Iterate of SGD

In order to analyze the performance of the noisy projected gradient descent algorithm we will use
the convergence guarantees for the last iterate of SGD given in [SZ13, JNN19]. For the purpose
of these results we let F (w) be an arbitrary convex function over K for which we are given an
unbiased stochastic (sub-)gradient oracle G. That is for every w ∈ K, E[G(w)] ∈ ∂F (w). Let
PSGD(G,w0, {ηt}t∈[T ]) denote the execution of the following process: starting from point w0, use
the update wt+1

.
= ΠK(wt + ηt+1G(wt)) for t = 0, . . . , T − 1. Shamir and Zhang [SZ13] prove that

the suboptimality of the last iterate of SGD with the step size ηt being proportional to 1/
√
t scales

as (log T )/
√
T . This variant of SGD relies on relatively large step sizes in the early iterates which

would translate into a relatively strong assumption on smoothness in Theorem 3.1. However, it is
known [Har19] that the analysis in [SZ13] also applies to the fixed step size ηt scaling as 1/

√
T (in

fact, it is simpler and gives a slightly better constants in this case).

Theorem 3.2 ([SZ13]). Let K ⊆ Rd be a convex body of diameter D, let F (w) be an arbitrary
convex function over K and let G be an unbiased stochastic (sub-)gradient oracle G for F . Assume
that for every w ∈ K, E[‖G(w)‖22] ≤ L2

G. For T ∈ N and w0 ∈ K, let w1, . . . , wT denote the iterates
produced by PSGD(G,w0, {D/(LG

√
T )}). Then

E[F (wT )] ≤ F ∗ +
DLG(2 + lnT )√

T
,

where F ∗
.
= minw∈K F (w) and the expectation is taken over the randomness of G.

Further, Jain et al. [JNN19] show that the lnT factor can be eliminated by using faster decaying
rates. Their step-size schedule is defined as follows.

Definition 3.3. For an integer T , let ` = dlog2 T e. For 0 ≤ i ≤ `, let Ti = T − dT · 2−ie and let

T`+1 = T . For a constant c, every 0 ≤ i ≤ ` and Ti < t ≤ Ti+1, we define ηt = c2−i
√
T

. We denote

the resulting sequence of step sizes by η̄JNN(c).

Jain et al. [JNN19] prove that the following guarantees hold for SGD with step sizes given by
η̄JNN(c).

Theorem 3.4 ([JNN19]). Let K ⊆ Rd be a convex body of diameter D, let F (w) be an arbitrary
convex function over K and let G be an unbiased stochastic (sub-)gradient oracle G for F . Assume

9



that for every w ∈ K, E[‖G(w)‖22] ≤ L2
G. For T ∈ N and w0 ∈ K, let w1, . . . , wT denote the iterates

produced by PSGD(G,w0, η̄JNN(D/LG)). Then

E[F (wT )] ≤ F ∗ +
15DLG√

T
,

where F ∗
.
= minw∈K F (w) and the expectation is taken over the randomness of G.

We remark that the results in [JNN19] are stated for an oracle G that gives (sub)-gradients
bounded by GL almost surely. This condition is necessary for the high-probability version of their
result but a bound on the variance of G suffices to upper bound E[F (wT )]. In addition, while
the results are stated for a fixed gradient oracle, the same results hold when a different stochastic
gradient oracle Gt is used in step t as long as all the oracles satisfy the assumptions (namely,
E[Gt(w)] ∈ ∂F (w) and E[‖Gt(w)‖22] ≤ L2

G for all t).

3.3 Snowball-SGD

Finally we derive the privacy and utility guarantees for noisy SGD by calculating the batch sizes
needed to ensure the privacy guarantees for the settings in Theorems 3.2 and 3.4. The sum of batch
sizes in turn gives us the number of samples n necessary to implement T steps of these algorithms.
The resulting batch sizes will be proportional to

√
d/(T − t+ 1) and we refer to such batch size

schedule as Snowball-SGD.

Theorem 3.5. Let K ⊆ Rd be a convex set of diameter D and {f(·, x)}x∈X be a family of
convex L-Lipschitz and β-smooth functions over K. For T ∈ N, ρ > 0, and all t ∈ [T ] let
Bt = d2

√
d/(T − t+ 1)/ρe, n =

∑
t∈[T ]Bt, η = D/(L

√
2T ), σ = L/

√
d, If η ≤ 2/β then for all

α ≥ 1, starting point w0 ∈ K, and S ∈ X n, PNSGD(S,w0, {Bt}, {η}, {σ}) satisfies
(
α, α · ρ2/2

)
-

RDP. Further, if S consists of samples drawn i.i.d. from a distribution P, then n ≤ T + 4
√
dT/ρ

and

E[F (wT )] ≤ F ∗ +

√
8DL(2 + lnT )√

T
≤ F ∗ +

√
32DL · ln(10n) ·

(
1√
n

+
2
√
d

ρn

)
,

where, for all w ∈ K, F (w)
.
= Ex∼P [f(w, x)], F ∗

.
= minw∈K F (w) and the expectation is taken over

the random choice of S and noise added by PNSGD.

Proof. We first establish the privacy guarantees. By Theorem 3.1, all we need is to verify that for
our choice of {Bt}, σ and η we have for every t ∈ [T ],

4L2 ·max
t∈[T ]

{
η2

B2
t ·
∑T

s=t η
2σ2

}
= 2L2 max

t∈[T ]

{
1

B2
t · (T − t+ 1)L2/d

}
≤ ρ2.

This implies that

n =
∑
t∈[T ]

⌈√
4d

ρ2(T − t+ 1)

⌉
≤
∑
t∈[T ]

√
4d

ρ2(T − t+ 1)
+ 1 = T +

2
√
d

ρ

∑
t∈[T ]

1√
t
≤ T +

4
√
dT

ρ
,

where we used the fact that
∑

t∈[T ]
1√
t
≤ 2(
√
T + 1− 1) + 1 ≤ 2

√
T .

10



To establish the utility guarantees, we first note that for all t ∈ [T ],

∇Ft(w) =
1

Bt

i=
∑

s≤tBs∑
i=1+

∑
s≤t−1Bs

∇wf(w, xi).

Thus for S sampled i.i.d. from P and index i in batch t, E[∇wf(w, xi)] = ∇F (w). In particular,
for ξt ∼ N (0, σ2), E[∇Ft(w) + ξt] = ∇F (w) and therefore each ∇Ft(w) + ξt gives an independent
sample from a stochastic gradient oracle for F . Our setting of the noise scale σ = L/

√
d ensures

that for every t ∈ [T ]

ES∼Pn,ξt∼N (0,σ2)

[
‖∇Ft(w) + ξt‖22

]
=

Ex∼P
[
‖∇wf(w, x)‖22

]
Bt

+ dσ2 ≤ L2

Bt
+ L2 ≤ 2L2.

This implies that for our choice of parameters PNSGD(S,w0, {Bt}, {η}, {σ}) can be seen as an ex-
ecution PSGD(G,w0, {D/(LG

√
T )}) with stochastic gradient oracles with variance upper-bounded

by L2
G = 2L2. Plugging this value in Theorem 3.2 gives our bound on the utility of the algorithm.

To obtain the bound in terms of n we note that n ≤ T + 4
√
dT
ρ , implies that T ≥ n2

16d/ρ2+4n
and thus

1√
T
≤ 2√

n
+

4
√
d

ρn
.

Next, we give a differentially private version of the step-size schedule from [JNN19].

Theorem 3.6. Let K ⊆ Rd be a convex set of diameter D and {f(·, x)}x∈X be a family of
convex L-Lipschitz and β-smooth functions over K. For T ∈ N, ρ > 0, and all t ∈ [T ] let
Bt = d4

√
3d/(T − t+ 1)/ρe, n =

∑
t∈[T ]Bt, {ηt} = η̄JNN(D/(

√
2L)), σ = L/

√
d, If η1 ≤ 2/β

then for all α ≥ 1, starting point w0 ∈ K, and S ∈ X n, PNSGD(S,w0, {Bt}, {ηt}, {σ}) satis-
fies

(
α, α · ρ2/2

)
-RDP. Further, if S consists of samples drawn i.i.d. from a distribution P, then

n ≤ T + 4
√
dT/ρ and

E[F (wT )] ≤ F ∗ +
15
√

2DL√
T

≤ 30
√

2DL ·

(
1√
n

+
4
√

3d

ρn

)
,

where, for all w ∈ K, F (w)
.
= Ex∼P [f(w, x)], F ∗

.
= minw∈K F (w) and the expectation is taken over

the random choice of S and noise added by PNSGD.

Proof. The utility guarantees for this algorithm follow from the same argument as in the proof of
Theorem 3.5 together with Theorem 3.4. As before, by Theorem 3.1, all we need to establish the
privacy guarantees is to verify that for our choice of {Bt}, σ and {ηt} we have for every t ∈ [T ],

4L2 ·max
t∈[T ]

{
η2t

B2
t ·
∑T

s=t η
2
sσ

2

}
≤ ρ2. (1)

We first observe that for t = T we have that

η2t

B2
t ·
∑T

s=t η
2
sσ

2
=

d

B2
TL

2
≤ ρ2

48L2
. (2)
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For t ∈ [T − 1], let i be such that Ti < t ≤ Ti+1. Then we note that for c = D/(
√

2L)

ηt = c
2−i√
T
≥ cdT2−ie − 1

T
√
T

≥ cT − Ti − 1

T 3/2
≥ cT − t

T 3/2
.

and therefore
T∑
s=t

η2s ≥ c2
T∑
s=t

(T − s)2

T 3
≥ c2

T 3
· (T − t)2(T − t+ 1)

3
.

In addition, using the fact that for t ≤ T − 1, i ≤ `− 1 we have that

ηt = 2c
2−i−1√
T
≤ 2c

dT2−i−1e
T
√
T

= 2c
T − Ti+1

T 3/2
≤ 2c

T − t
T 3/2

.

Thus

η2t

B2
t ·
∑T

s=t η
2
sσ

2
=

1

B2
t σ

2
· 4c2(T − t)2

T 3
· 3T 3

c2(T − t)2(T − t+ 1)
=

12d

B2
tL

2(T − t+ 1)
≤ ρ2

4L2
.

Plugging this and eq. (2) into eq.(1) we obtain that the privacy condition holds.
As in the proof of Theorem 3.6, we obtain that

n =
∑
t∈[T ]

Bt ≤ T +
8
√

3
√
dT

ρ

and thus T ≥ n2

192d/ρ2+4n
. This means that

1√
T
≤ 2√

n
+

8
√

3d

ρn
,

implying the claimed bound on utility in terms of n.

As a corollary we get the proof of our main claim.

Corollary 3.7 (Thm. 1.1 restated). Let K ⊆ Rd be a convex set of diameter D and {f(·, x)}x∈X be
a family of convex L-Lipschitz and (2D

√
2T/L)-smooth functions over K. For every ρ > 0, there

exists an algorithm A that given a starting point w0 ∈ K, and S ∈ X n returns a point ŵ. For all
α ≥ 1, A satisfies

(
α, α · ρ2/2

)
-RDP and uses n evaluations of the gradient of f(w, x). Further, if

S consists of samples drawn i.i.d. from a distribution P over X , then

E[F (ŵ)] ≤ F ∗ +O

(
DL ·

(
1√
n

+

√
d

ρn

))
,

where, for all w ∈ K, F (w)
.
= Ex∼P [f(w, x)], F ∗

.
= minw∈K F (w) and the expectation is taken over

the random choice of S and randomness of A.
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4 Localization-Based Algorithms

In this section, we describe the Iterative Localization framework, and give two instantiations of it.
Our localization algorithm will be based on adding Gaussian noise to an algorithm whose output
has low L2-sensitivity (also referred to as uniform stability of the parameter). We first briefly recall
the relevant definitions and the resulting privacy guarantees.

Definition 4.1. A deterministic algorithm (or function) A : X n → Rd has L2-sensitivity of γ if for
all pairs of datasets S, S′ ∈ X n that differ in a single element we have that ‖A(S)−A(S′)‖2 ≤ γ.

The well-known property of the Gaussian mechanism is that it can convert any algorithm with
bounded L2-sensitivity to a differentially private one.

Lemma 4.2. Let A : X n → Rd be a deterministic function with L2-sensitivity γ. Then for any

ρ > 0, an algorithm that outputs A(S) + ξ where ξ ∼ N (0, γ
2

ρ2
Id) satisfies (α, 12αρ

2)-RDP for all
α ≥ 1.

Suppose we have an algorithm A that given a point w ∈ B(w∗, D) and a sequence of samples
from F , outputs a w′ ∈ B(w∗, D/4). We will want this A to have small sensitivity, and small
suboptimality, both of which scale, say, linearly with D. Given such an A, we can iteratively
invoke it with geometrically decreasing D, adding noise at the end of each phase to ensure privacy.
Crucially, once the diameter bound D becomes small enough, the noise added is small enough that
the suboptimality due the added noise is negligible. This would allow us to incur only a logarithmic
overhead in terms of sample complexity, while ensuring privacy and good utility bounds.

We next describe two instantiations of this Iterative Localization framework. To get better
bounds, we only bound the second moment of the distance ‖w′ − w∗‖, instead of requiring that
‖w′ − w∗‖ is uniformly bounded. The first instantiation uses SGD as algorithm A, and applies to
convex functions. The sensitivity bound here comes from bounding the step sizes and holds under
mild smoothness assumptions. The second instantiation will apply to arbitrary convex functions,
and optimizes a regularized objective to ensure a sensitivity bound.

4.1 SGD-Based Iterative Localization

Our algorithm is based on a sequence of phases such that each phase (implicitly) localizes an
approximate minimizer of the population loss. Specifically, given a point wi such that for some w∗i ,
E[‖wi − w∗i ‖22] ≤ D, the algorithm outputs a point wi+1 such that for some point w∗i+1, E[‖wi+1 −
w∗i+1‖22] ≤ D/4 and, in addition, E[F (w∗i+1)]− E[F (w∗i )] ≤ τ/2i where τ is the desired excess loss.

Our algorithm relies on the fact that SGD on sufficiently smooth loss functions has low L2-
sensitivity [HRS15, FV19].

Lemma 4.3. Each iterate of one-pass online projected gradient descent with fixed step size η over
a sequence of β-smooth L-Lipschitz convex functions has L2-sensitivity of at most 2Lη as long as
η ≤ 2/β. In particular, the same applies to the average of all the iterates.

Theorem 4.4. Assume that ‖w0 − w∗‖2 ≤ D (this is the case, for example, when K has diameter
at most D), and set

η =
D

L
min

{
4√
n
,
ρ√
d

}
.
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Algorithm 2 Phased-SGD algorithm

Input: Data set S = {x1, . . . , xn}, convex f : K×X → R, initial point w0 ∈ K, step size η, privacy
parameter ρ.

1: set k = dlog2 ne
2: for i = 1, . . . , k do
3: set ni = 2−in and ηi = 4−iη.
4: initialize an PSGD algorithm (over domain K) at wi−1 and run with step size ηi for ni steps;

let wi be the average iterate.
5: set wi = wi + ξi, where ξi ∼ N (0, σ2i Id) with σi = 4Lηi

/
ρ.

6: return the final iterate wk.

Then for the output of Algorithm 2, we have

E[F (wk)]− F (w∗) ≤ 10LD

(
1√
n

+

√
d

ρn

)
,

provided that η ≤ 2/β.

To prove the theorem, we first provide utility and privacy guarantees for each individual phase
of the algorithm.

Lemma 4.5. Assume that ηi ≤ 2/β. Then for any α ≥ 1, the output wi of phase i in Algorithm 2
satisfies (α, αρ2/2)-RDP, and for any w ∈ K,

E[F (wi)]− F (w) ≤
E[‖wi−1 − w‖22]

2ηini
+
ηiL

2

2
. (3)

Proof. The privacy guarantee follows from Lemma 4.2 together with the fact that PSGD (when
viewed as a deterministic mapping from a data set to a final iterate) with step size ηi ≤ 2/β has
L2-sensitivity bounded by 2Lηi (this is a consequence of Lemma 4.3). The utility guarantee follows
from standard convergence bounds for PSGD (e.g., Lemma 7 of [HK14]).

We can now prove Theorem 4.4.

Proof of Theorem 4.4. Denote w0 = w∗ and ξ0 = w0 − w∗; by assumption, ‖ξ0‖2 ≤ D. Using
Lemma 4.5, the total error of the algorithm can be bounded by

E[F (wk)]− F (w∗) =
k∑
i=1

E[F (wi)− F (wi−1)] + E[F (wk)− F (wk)]

≤
k∑
i=1

(
E[‖ξi−1‖22]

2ηini
+
ηiL

2

2

)
+ L · E[‖ξk‖2].

Recall that by definition η ≤ (D/L) · (ρ/
√
d), so that for all i ≥ 0,

E[‖ξi‖22] = dσ2i = d(4−iLη/ρ)2 ≤ (4−iD)2.
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In particular, we have E[‖ξk‖2] ≤
√

E[‖ξk‖22] = 4−kD. Hence,

E[F (wk)]− F (w∗) ≤
k∑
i=1

2−i
(

8D2

ηn
+
ηL2

2

)
+ 4−kLD

≤
∞∑
i=1

2−iLD

(
8

n
max

{
√
n,

√
d

ρ

}
+

1

2
√
n

)
+
LD

n2

≤ 9LD

(
1√
n

+

√
d

ρn

)
+
LD

n2
.

4.2 Non-Smooth DP-SCO: Phased ERM

In this section, we demonstrate that the general approach based on localization can also be applied
to the non-smooth case. We only require f(·, x) to be convex and L-Lipschitz for any x ∈ X . Our
algorithm is similar to the one in the previous section, except that we replace the PSGD subroutine
in step 3 of the algorithm with a regularized ERM computation. The L2 regularization in this case
is the standard technique for ensuring low sensitivity that we require. In addition, low-sensitivity
ensures uniform stability and thus generalization of the solution to the population. To get a more
efficient algorithm, we use an approximate optimizer instead of an exact one. The suboptimality of
this optimization should be small enough that the sensitivity of the resulting algorithm can still be
controlled. To solve the regularized problem, we employ SGD that ensures the suboptimality bound,
and hence the sensitivity bound, with high probability. To allow for a small failure probability of
this approach, we will only give (ε, δ)-DP guarantees for the algorithm. We will use the following
standard variant of Lemma 4.2:

Lemma 4.6. Let A : X n → Rd be a randomized function such that for all pairs of datasets
S, S′ ∈ X n that differ in a single element there is a coupling such that ‖A(S)−A(S′)‖2 ≤ γ except

with probability δ. Then for any ρ > 0, an algorithm that outputs A(S)+ξ where ξ ∼ N (0, γ
2

ε2
ln 1

δ Id)
satisfies (ε, 2δ)-DP.

Algorithm 3 Phased-ERM algorithm

Input: Data set S = {x1, . . . , xn}, convex f : K×X → R, initial point w0 ∈ K, step size η, privacy
parameters ε, δ.

1: set k = dlog2 ne
2: for i = 1, . . . , k do
3: set ni = 2−in and ηi = 4−iη.
4: compute w̃i ∈ K such that Fi(w̃i)− arg minw∈K Fi(w) ≤ L2ηi/ni with prob. (1− δ) for

Fi(w) =
1

ni

ni∑
t=1

f(w, xt) +
1

ηini
‖w − wi−1‖22.

5: set wi = w̃i + ξi, where ξi ∼ N (0, σ2i Id) with σi = 4L(ηi/ε)
√

ln(1/δ).
6: return the final iterate wk.

We first prove the relevant properties of the regularized ERM algorithm.
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Lemma 4.7. The output wi of phase i of Algorithm 3 satisfies (ε, 2δ)-DP, and for any w ∈ K,

E[F (w̃i)]− F (w) ≤
E[‖wi−1 − w‖22]

ηini
+ 3ηiL

2. (4)

Further, w̃i can be found using O(n2i log(1/δ)) gradient computations on f .

Proof. The objective Fi minimized in phase i is L-Lipschitz and λi-strongly convex for λi = 2/(ηini);
denote by wi ∈ K its minimizer. From the results in [BE02, SSSSS09] we know that the minimizer
wi has L2 sensitivity bounded by 4L/(λini) = 2Lηi, and furthermore,

E[F (wi)]− F (w) ≤ λi
2
E[‖wi−1 − w‖22] +

4L2

λini
=

E[‖wi−1 − w‖22]
ηini

+ 2L2ηi.

(This is a slight modification of Theorem 7 in [SSSSS09].) For the approximate minimizer w̃i, we
have by strong convexity that except with probability δ

λi
2
‖w̃i − wi‖2 ≤ Fi(w̃i)− Fi(wi) ≤

L2ηi
ni

,

which implies that ‖w̃i − wi‖ ≤ Lηi. In particular, w̃i has sensitivity of at most 4Lηi, which gives
the privacy guarantee via Lemma 4.6. Finally, for any w ∈ K we have

E[F (w̃i)]− F (w) = E[F (wi)− F (w)] + E[F (w̃i)− F (wi)] ≤
E[‖wi−1 − w‖22]

ηini
+ 3L2ηi,

which implies the claim on utility. Finally, to obtain the running time statement, we use the
fact that for optimizing an L-Lipschitz and λ-strongly convex function to within ∆ accuracy with
probability ≥ 1 − δ using SGD, one needs O((L2/λ∆) log(1/δ)) stochastic gradient computations
(e.g., [HLPR19]). Hence, the number of gradient calls needed for computing w̃i, being an ∆i-
approximate minimizer of a λi-strongly convex function for ∆i = L2ηi/ni and λi = 1/(ηini), is
O((L2/λi∆i) log(1/δ)) = O(n2i log(1/δ)).

The proof of the following result is identical to that Theorem 4.4, with Lemma 4.7 replacing
Lemma 4.5.

Theorem 4.8. Assume that ‖w0 − w∗‖2 ≤ D, and set

η =
D

L
min

{
4√
n
,

ε√
d ln(1/δ)

}
.

Then for the output of Algorithm 2, we have

E[F (wk)]− F (w∗) = O

(
LD

(
1√
n

+

√
d ln(1/δ)

εn

))
.

Further, a version of this algorithm can be implemented with O(n2
√

ln(1/δ)) stochastic gradient
computations.
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5 The Strongly Convex Case

Suppose that the population loss of interest F is λ-strongly convex and L-Lipschitz over the domain
K. In this case, the optimal statistical rate is O(L2

/
λn) [HK14], and the private ERM can be

optimized with an error of Õ(dL2
/
ε2λn2). The best known bound for Private Stochastic Convex

Optimization for this case is due to [BST14] who give an upper bound of Õ(L2
√
d
/
λεn). As in the

convex case, we show that the optimal rate is in fact the larger of the two lower bounds, and is
attained by a linear-time algorithm.

We first show that an asymtotically-optimal algorithm and linear-time for this case can be
obtained via a folklore reduction to the convex case (see, e.g., [HK14] for a similar instantiation
of this reduction). We then give two new algorithms for the strongly convex case: one based on
the iterative localization and the other based on privacy amplification by iteration. The algorithms
are simpler and require weaker assumption on the condition number than the reduction-based
approach. Both of the new algorithms rely on a new analysis of SGD with fixed step-size in the
strongly convex case.

5.1 Reduction to the Convex Case

Assume a private stochastic (non-strongly) convex optimization algorithm A with the following
utility guarantee when initialized at w0 ∈ K:

E[F (wA)]− F (w∗) ≤ cLD

(
1√
n

+

√
d

ρn

)

for some universal constant c ≥ 1, where D > 0 is such that ‖w0 − w∗‖2 ≤ D. (E.g., this can
be one of Algorithms 1 to 3 under their respective assumptions and settings of ρ.) Consider the
following algorithm: starting from a given w0 ∈ K, repeat the private optimization algorithm A for
k = dlog logne times, where run i = 1, . . . , k is initialized at the output of the previous phase and
is run for ni = 2i−2n/ log n iterations. We prove the following:

Theorem 5.1. The algorithm described above is private (with the same privacy parameters as of
A), and using no more than n samples outputs a solution whose expected population loss is at most

O

(
L2

λ

(
1

n
+

d

ρ2n2

))
.

This is the optimal rate under strong convexity assumptions. Further, under β-smoothness as-
sumptions and when the condition number is β/λ = O(max{

√
n/ log n,

√
d/ρ}), the inner stochastic

convex optimization problems are sufficiently smooth so that we can use Algorithm 2 as the basic
private optimization algorithm (with step sizes ηi that satisfy β ≤ 1/ηi, as ni = Ω(n/ log n) for
all i in the reduction) and get a linear time algorithm for stochastic strongly convex optimization.
Without any smoothness assumptions, we can invoke the reduction with Algorithm 3 and get a
quadratic-time algorithm with the optimal rate. In Section 5.2 we show how the constraint on the
condition number can be relaxed all the way up to β/λ = O(n/ log n) via a more careful argument
that utilizes our iterative localization framework directly.

Proof of Theorem 5.1. First, observe that the total number of samples used by the algorithm is
indeed

∑k
i=1 ni ≤ 2k−1n/ log n ≤ n. Denote the output of phase i by wi; let ∆i = E[F (wi)]−F (w∗)
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be the expected suboptimality after phase i, and let D2
i = E[‖wi − w∗‖2] for all i. The λ-strong

convexity of F implies 1
2λD

2
i ≤ ∆i for all i ≥ 0. Thus, by the guarantee of the private convex

optimization algorithm, we have for all i that

∆i+1 ≤ cLDi

(
1
√
ni

+

√
d

ρni

)
≤ cL

√
2∆i

λ

(
1
√
ni

+

√
d

ρni

)
.

Let us denote by Ei the expression c2(2L2/λ)
(

1√
ni

+
√
d

ρni

)2
. Since Ei/Ei+1 ≤ 4 (as ni+1/ni = 2 by

construction), the above inequality can be rearranged as

∀ i ≥ 0,
∆i+1

16Ei+1
≤
√

∆iEi
16Ei+1

=
Ei

16Ei+1

√
∆i

Ei
≤
√

∆i

16Ei
.

This implies that for k > log log(∆1/E1), it holds that ∆k ≤ 2Ek. Observing that ∆1 ≤ 2L2λ (due
to strong convexity) and E1 ≥ 2L2λ/n, we see that after k = dlog log ne phases, we hold a solution
with error

E[F (wk)]− F (w∗) ≤ 8c2L2

λ

(
1

n
+

d

ρ2n2

)
.

5.2 Direct Algorithms for the Strongly Convex Case

Now we show a linear time algorithm for the λ-strongly convex case, as long as the condition
number κ = β/λ is bounded by O(n/ log n). Towards this goal, we first analyze a fixed step-size
algorithm for stochastic strongly convex optimization.3

5.2.1 Fixed Step-size Algorithm for Strongly Convex SCO

Lemma 5.2. Consider PSGD iterations with a fixed step size η. Suppose that η ≤ 1
2λ and define

weights γt = (1− ηλ)−t for t = 1, . . . , T . Then for any w,

E

[
1∑T
t=1 γt

T∑
t=1

γtF (wt)

]
− F (w) ≤ λ

eηλT − 1
‖w1 − w‖2 +

L2

2
η.

In particular, setting η = 2 log(T )/λT ensures that the average iterate wT = (
∑T

t=1 γt)
−1∑T

t=1 γtwt
has, for T > 1,

E[F (wT )]− F (w∗) ≤ 5L2 log T

λT
.

Observe that for ensuring η ≤ 1/β, it is sufficient that T = Ω(κ log κ) for κ = β/λ.

Proof. Denote the gradient vector used on iteration t by gt. Following the standard SGD analysis,
we can obtain

gt · (wt − w∗) ≤
1

2η

(
‖wt − w∗‖2 − ‖wt+1 − w∗‖2

)
+
η

2
‖gt‖2

3In typical variants of strongly convex (stochastic) gradient descent, one employs a decaying step-size schedule
of the form ηt = 1/(λt) for obtaining the optimal convergence rate. Here we show that the same rate (up to a
logarithmic factor) can be attained by a fixed step-size algorithm, which is useful for our privacy analysis.
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for all t, and taking expectations of the above yields

E[∇F (wt) · (wt − w∗)] ≤
1

2η

(
E‖wt − w∗‖2 − E‖wt+1 − w∗‖2

)
+
η

2
E‖gt‖2.

On the other hand, the λ-strong convexity of F implies

F (wt)− F (w∗) ≤ ∇F (wt) · (wt − w∗)−
λ

2
‖wt − w∗‖2.

Combining inequalities and summing over t = 1, . . . , T with coefficients γ1, . . . , γT , we obtain

T∑
t=1

γtE[F (wt)− F (w∗)]

≤
T∑
t=1

γt
2η

(
E‖wt − w∗‖2 − E‖wt+1 − w∗‖2

)
− λγt

2

T∑
t=1

E‖wt − w∗‖2 +

T∑
t=1

ηγt
2

E‖gt‖2

≤ γ1
2η
‖w1 − w∗‖2 +

1

2

T∑
t=2

(
γt − γt−1

η
− λγt

)
‖wt − w∗‖2 +

L2η

2

T∑
t=1

γt,

where in the final inequality we have used our assumption that E‖gt‖2 ≤ L2 for all t. Now, set
γt = (1− ηλ)−t in the bound above. Observe that γ1/η ≤ 2/η (as we required that η ≤ 1/2λ), and
for all t > 1,

γt − γt−1
η

− λγt =
γt(1− ηλ)− γt−1

η
= 0.

Also, a simple computation shows that

T∑
t=1

γt =
1

ηλ

(
(1− ηλ)−T − 1

)
≥ 1

ηλ

(
eηλT − 1

)
.

We therefore obtain

T∑
t=1

γt∑T
s=1 γs

E[F (wt)− F (w∗)] ≤ λ

eηλT − 1
‖w1 − w∗‖2 +

L2

2
η.

By plugging in our choice of η and applying Jensen’s inequality on the left-hand side, we establish
the first bound. The second bound is obtained by plugging in η = log(T )/λT and bounding
‖w1 − w∗‖2 ≤ 4L2/λ2 (using strong convexity).

5.2.2 Direct Algorithm via Iterative Localization

We can now analyze a variant of Algorithm 2 for the strongly convex case, with appropriately
chosen parameters.

Theorem 5.3. Assume that in Algorithm 2, we set k = ln lnn, ni = n/k, ηi = 2−2
i
η and η =

4ck lnn
λn . Then for the output of Algorithm 2, we have

E[F (wk)]− F (w∗) ≤ O
(
L2 lnn ln lnn

λ

(
1

n
+
d ln lnn

ρ2n2

))
,

provided that κ ≤ n
k lnn .
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Proof. Denote w0 = w∗ and ξ0 = w0−w∗; by strong convexity, ‖ξ0‖2 ≤ 2L2/λ2. Using Lemma 5.2,
the total error of the algorithm can be bounded by

E[F (wk)]− F (w∗) =

k∑
i=1

E[F (wi)− F (wi−1)] + E[F (wk)− F (wk)]

≤
k∑
i=1

(
2λ

eηiλni − 1
E[‖ξi−1‖2] +

ηiL
2

2

)
+ L · E[‖ξk‖2]

≤ 8λ

eη1λn1

L2

λ2
+

k∑
i=2

(
2λ

ηiλni

)
·
dL2η2i−1
ρ2

+
L2

2

k∑
i=1

ηi + L · E[‖ξk‖2].

Here we have used the fact that exp(a)− 1 ≥ exp(a)/2 for a ≥ 1 and exp(a)− 1 ≥ a. Continuing
from above,

≤ 8L2

λnc
+

2dkL2

ρ2n

k∑
i=2

η2i−1
ηi

+
L2

2

k∑
i=1

ηi + L · (
√
dηkL)

≤ 8L2

λnc
+

2kdL2η

ρ2n
+
L2η

2
+
L2
√
dη

22k

≤ 8L2

λnc
+

8ck2dL2 lnn

ρ2n2
+

4ckL2 lnn

λn
+
ckL2 lnn

√
d

λn2
.

For c ≥ 2, it is easy to check that each of the terms is bounded by max
{
O(kL

2 lnn
λn ), O(dk

2L2 lnn
λρ2n2 )

}
.

The claim follows.

5.2.3 Direct Algorithm via Privacy Amplification by Iteration

We next derive a variant of Snowball-SGD for the strongly convex case.

Theorem 5.4. Let K ⊆ Rd be a convex set of diameter D and {f(·, x)}x∈X be a family of λ-
strongly convex L-Lipschitz and β-smooth functions over K. For T ∈ N, ρ > 0, and all t ∈ [T ] let
Bt = d2

√
d/(T − t+ 1)/ρe, n =

∑
t∈[T ]Bt, η = 2 log T

λT , σ = L/
√
d, If η ≤ 2/β then for all α ≥ 1,

starting point w0 ∈ K, and S ∈ X n, PNSGD(S,w0, {Bt}, {η}, {σ}) satisfies
(
α, α · ρ2/2

)
-RDP.

Further, if S consists of samples drawn i.i.d. from a distribution P, then n ≤ T + 4
√
dT/ρ and

E[F (wT )] ≤ F ∗ +
20L2 log2 T

λT
≤ F ∗ +

40L2 log2 n

λ
·
(

1

n
+

16d

ρ2n2

)
,

where, for all w ∈ K, F (w)
.
= Ex∼P [f(w, x)], F ∗

.
= minw∈K F (w) and the expectation is taken over

the random choice of S and noise added by PNSGD.

Proof. The privacy proof is identical to that of Theorem 3.5. For the utility analysis, we prove the
following bound for the last iterate of our fixed step-size algorithm:

E[F (wT )]− E

[
1∑T
t=1 γt

T∑
t=1

γtF (wt)

]
≤ L2

2
η

T∑
k=1

γT−k
Γk−1

. (5)
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To see this, define Sk = E
[
(
∑T

t=T−k γt)
−1∑T

t=T−k γtF (wt)
]

and recall from Lemma 5.2 that for
any k, setting w = wT−k and viewing the algorithm as running SGD for T − k steps starting from
wT−k, we get:

Sk ≤ F (wT−k) +
L2

2
η. (6)

We next relate Sk−1 and Sk. Let Γk =
∑T

t=T−k γt. Note that

Γk−1Sk−1 = ΓkSk − γT−kE[F (wT−k)] = Γk−1Sk + γT−k(Sk − E[F (wT−k)]).

Dividing by Γk−1 and using Eq. (6), we conclude

Sk−1 ≤ Sk +
γT−k
Γk−1

· L
2

2
η.

Unravelling the recursion and observing that E[F (wT )] = S0 yields Eq. (5). Using the fact that
the γt are non-decreasing and applying Lemma 5.2, it follows that

E[F (wT )] ≤ F ∗ +
5L2 log T

λT
+
L2

2
η

T∑
k=1

1

k

≤ F ∗ +
10L2 log2 T

λT
.

The claimed utility bound follows from the fact that, as in the proof of Theorem 3.5, the expected
second moment of the gradient goes up from L2 to 2L2. The final bound follows by noting that

n ≤ T + 4
√
dT/ρ ≤ 2 max{T, 4

√
dT/ρ}

=⇒ T ≥ 1

2
min

{
n,
ρ2n2

16d

}
=⇒ 1

T
≤ 2 max

{
1

n
,

16d

ρ2n2

}
.

The claim follows.

6 No Privacy Amplification by Averaged Iteration

A common technique in convex optimization is to use iterate averaging. A plausible conjecture is
that the average of the iterates enjoys privacy properties similar to the last iterate. Indeed, in a
Contractive Noisy Iteration with uniform noise, the privacy for the last iterate and that for the
average iterate are within constant factors of each other when the contractive map is the identity.

Here we show that this does not hold true in general. Consider the contractive noise process
defined by contractive maps:

φi(x) =

{
x if i ≤ k;
0 otherwise.
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Here k is a parameter we will set appropriately. Thus the contractive noise process is

Xt+1 =

{
Xt +N (0, σ2) if t ≤ k;
N (0, σ2) otherwise.

The sum of Xt’s thus is easily seen to be distributed as:

kX0 +
∑
i≤k

(k − i+ 1)N (0, σ2) +

T∑
i=k+1

N (0, σ2).

Simplifying, the average iterate is distributed as:

k

T
X0 +N

(
0,
O(k3) + (T − k)

T 2
σ2
)
.

For σ = 1√
T

, where the final iterate has (α,O(α))-RDP, this simplifies to

k

T
X0 +N

(
0,
O(k3) + (T − k)

T 2
σ2
)

=
k

T

(
X0 +N

(
0, O

(
k

T

)
+

(T − k)

Tk2

))
.

Whereas for k = 1 and for k = T , this amount of noise gives (α,O(α))-RDP, for intermediate values

of k, e.g., k ∈ [T
1
3 , T

2
3 ], the effective amount of noise is not sufficient to mask X0.

A similar lower bound can be realized for online convex optimization. Consider the sequence of
loss functions over R defined as:

`t(w) =


(w − b)2 t = 1;
0 2 ≤ t ≤ k;
w2 k + 1 ≤ t ≤ T.

Here k is a parameter to be set appropriately, and b ∈ {−1, 1}. Suppose that step size is η = 1√
T

and the noise scale at each step is 1√
T

. If the noise added to the gradient at step t is ξt, then one

can verify that the average iterate is

k

T
(bη) +

∑
t≤k

(O(η) + (k − t))ηξt +
T∑

t=k+1

O(η)ηξt.

In other words, the average iterate is distributed as

kη

T

(
b+N

(
0, O

(
k

T

)
+

(T − k)

Tk2

))
.

This is the same behaviour as in the counterexample above. Thus the average is not (α,O(α)) −
RDP . This example can be easily modified to handle suffix averaging over a Ω(T )-sized suffix.
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