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Abstract

We study the complexity of learning in Kearns’ well-known statistical query (SQ) learning
model (Kearns, 1993). A number of previous works have addressed the definition and
estimation of the information-theoretic bounds on the SQ learning complexity, in other
words, bounds on the query complexity. Here we give the first strictly computational
upper and lower bounds on the complexity of several types of learning in the SQ model.

As it was already observed, the known characterization of distribution-specific SQ learn-
ing (Blum, et al. 1994) implies that for weak learning over a fixed distribution, the query
complexity and computational complexity are essentially the same. In contrast, we show
that for both distribution-specific and distribution-independent (strong) learning there ex-
ists a concept class of polynomial query complexity that is not efficiently learnable unless
RP = NP. We then prove that our distribution-specific lower bound is essentially tight
by showing that for every concept class C of polynomial query complexity there exists a
polynomial time algorithm that given access to random points from any distribution D and
an NP oracle, can SQ learn C over D.

We also consider a restriction of the SQ model, the correlational statistical query (CSQ)
model (Bshouty and Feldman, 2001; Feldman, 2008) of learning which is closely-related
to Valiant’s model of evolvability (Valiant, 2007). We show a similar separation result for
distribution-independent CSQ learning under a stronger assumption: there exists a concept
class of polynomial CSQ query complexity which is not efficiently learnable unless every
problem in W[P] has a randomized fixed parameter tractable algorithm.

Keywords: statistical query learning, computational lower bounds, evolvability

1. Introduction

The statistical query learning model of Kearns (1998) is a natural restriction of the PAC
learning model in which a learning algorithm is allowed to obtain estimates of statistical
properties of the examples but cannot see the examples themselves. Formally, the learning
algorithm is given access to STAT(f,D) – a statistical query oracle for the unknown target
function f and distribution D over some domain X. A query to this oracle is a function of
an example ψ : X×{−1, 1} → {−1, 1}. The oracle may respond to the query with any value
v satisfying |Ex∼D[ψ(x, f(x))] − v| ≤ τ where τ ∈ [0, 1] is the tolerance of the query. The
learning algorithm is considered to be efficient if it runs in polynomial time, uses queries
that can be evaluated in polynomial time and tolerance is lower-bounded by the inverse of
a polynomial (all polynomials are in the standard learning problem parameters such as the
dimension n and the inverse of the desired accuracy ε).

c© 2012 V. Feldman & V. Kanade.



Feldman Kanade

Kearns demonstrated that any learning algorithm that is based on statistical queries can
be automatically converted to a learning algorithm robust to random classification noise of
arbitrary rate smaller than the information-theoretic barrier of 1/2 (Kearns, 1998). Most
known learning algorithms and techniques can be converted to statistical query algorithms
and hence the SQ model proved to be a powerful approach for the design of noise-tolerant
learning algorithms (Kearns, 1998; Bylander, 1994; Blum et al., 1997; Dunagan and Vem-
pala, 2004). In fact, since the introduction of the model virtually all1 known noise-tolerant
learning algorithms were obtained from SQ algorithms. The basic approach was also ex-
tended to deal with noise in several other learning scenarios (Decatur, 1993; Jackson et al.,
1997; Bshouty and Feldman, 2002) and has also found applications in other areas including
privacy-preserving learning and learning on multi-core systems (Bansal et al., 2002; Blum
et al., 2005; Chu et al., 2006; Kasiviswanathan et al., 2008; Gupta et al., 2011).
Query complexity of SQ learning: Kearns has also demonstrated that there are information-
theoretic impediments unique to SQ learning: parity functions require an exponential num-
ber of SQs to be learned Kearns (1998). Further, Blum et al. (1994) proved that the number
of SQs required for weak learning (that is, one that gives a non-negligible advantage over
the random guessing) of a concept class C over a fixed distribution D is characterized
by a relatively simple combinatorial parameter of C called the statistical query dimension
SQ-DIM(C,D). SQ-DIM(C,D) measures the maximum number of “nearly uncorrelated”
(relative to distribution D) functions in C. These bounds for weak learning were strength-
ened and extended to other variants of statistical queries in several works (Bshouty and
Feldman, 2002; Blum et al., 2003; Yang, 2005; Feldman, 2008). In addition to its use for
learning, SQ-DIM was shown to be closely related to other measures of complexity, such as
margin complexity and communication complexity (Simon, 2006; Sherstov, 2007; Feldman,
2009b; Kallweit and Simon, 2011).

More recently, Simon (2007) described an explicit2 characterization of strong SQ learn-
ing with respect to a fixed distribution D. Simpler and stronger characterizations of strong
SQ learning were subsequently derived by Feldman (2009b) and Szörényi (2009). Feldman’s
characterization is based on maximizing SQ-DIM of a concept class that can be obtained by
subtracting a fixed function from each function of the given concept class. Szörényi char-
acterization result is based on measuring the maximum number of functions in C whose
pairwise correlations are nearly identical. It should be noted that all of these bounds char-
acterize learning in the distribution-specific setting. Characterizing the query complexity
of SQ learning in the distribution-independent setting is still an open problem.

Some of the notable applications of these characterizations are lower bounds for SQ
learning of intersections-of-halfspaces by Klivans and Sherstov (2007), an upper-bound on
the SQ dimension of halfspaces by Sherstov (2007) and a lower bound on strong SQ learning
of depth-3 monotone formulas by Feldman et al. (2011).
Evolvability: We also address the existence of computational barriers in Valiant’s recent
model for evolvability (Valiant, 2009). In Valiant’s model evolvability of a certain (presum-

1. A notable exception is the algorithm for learning parities of Blum et al. (2003) which is tolerant to
random noise, albeit not in the same strong sense as the algorithms derived from SQs.

2. An earlier work has also considered this question but the characterization that was obtained is in terms of
query-answering protocols that are essentially specifications of non-adaptive algorithms (Balcázar et al.,
2007).
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ably useful) functionality is cast as a problem of learning the desired functionality through a
process in which, at each step, the most “fit” candidate function is chosen from a small pool
of mutations of the current candidate. Limits on the number of steps and the amount of
computation performed at each step are imposed to make this process naturally plausible.
A class of functions C is considered evolvable if there exists a single representation scheme
R and a mutation algorithm M on R that, when guided by such selection, guarantees
convergence to the desired function for every function in C.

It has been observed by Valiant that all evolvable concept classes are also SQ learn-
able. Further, Feldman (2008) demonstrated that evolvability in Valiant’s original3 model
is equivalent to learning by correlational statistical queries (CSQ). A CSQ is a restriction of
SQ which allows only query functions of the form ψ(x, `) ≡ g(x) · `, where g(x) is a boolean
function. In the context of SQ learning, CSQs were first defined by Bshouty and Feldman
(2002), but an essentially equivalent form of queries was earlier defined by Ben-David et al.
(1990) who introduced it as an instance of their Learning-By-Distances model. In both of
these works it was observed that when the distribution is fixed CSQ learning is equivalent to
SQ learning. On the other hand, in (Feldman, 2008, 2011) it was shown that distribution-
independent CSQ learning is strictly weaker than SQ learning. This separation is based on
information-theoretic lower bounds related to those known in the SQ model.

1.1. Overview of Our Results

While the query complexity of weak SQ learning is fairly well-studied, we are not aware of
any prior work that deals with computational hardness specific to SQ learning. It would be
natural to try to derive computational hardness of SQ learning using one of the numerous
concept classes for which computational lower bounds in the more general PAC learning
model are known (under a variety of cryptographic assumptions) (Valiant, 1984; Kearns and
Valiant, 1994; Kharitonov, 1995). However, this does not work since for all the commonly-
studied concept classes (such as polynomial-size constant-depth circuits, for example), the
query complexity of the computationally hard-to-PAC-learn class is superpolynomial. In
other words, for the concept classes we are aware of, the query complexity of SQ learning
upper-bounds (up-to-polynomial factors) the computational complexity of PAC learning.

As it turns out, this situation is not incidental. Most of the known computational-
hardness results prove hardness of weak learning over a fixed distribution. As we observe
in Theorem 1, the characterization of weak distribution-specific SQ learning by Blum et al.
(1994) implies that in this setting the query complexity of SQ learning and the (non-uniform)
computational complexity of SQ learning are the same up to a polynomial factor.
Lower bounds: In Theorems 3 and 5 we show that, in contrast to Theorem 1, for both
strong distribution-specific and distribution-independent SQ learning there exist concept
classes of polynomial query complexity that are not efficiently SQ learnable unless RP = NP.
As in PAC learning, weak and strong distribution-independent SQ learning are equivalent
and therefore we do not treat weak distribution-independent SQ learning separately (Aslam
and Decatur, 1998)). In Theorem 7 we prove an analogous separation of computational and
information-theoretic complexity for distribution-independent CSQ learning, albeit under a

3. In subsequent work other loss functions were used to measure “fitness” of candidate mutations and the
resulting models can be equivalent to all of SQ (Feldman, 2009a).
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stronger assumption: there exists a concept class of polynomial CSQ query complexity which
is not efficiently learnable unless every problem in W[P] has a randomized fixed parameter
tractable algorithm. In particular this would imply an algorithm for the weighted circuit
satisfiability problem4 that runs in time poly(2`, n). In the learning context this would imply
an efficient, distribution-independent and proper learning algorithm for juntas (Alekhnovich
et al., 2008). These are the first strictly computational lower bounds in all three settings.
We remark that our hardness results for SQ learning are stronger than those available for
(improper) PAC learning since the latter are based on cryptographic assumptions.

The basic technique for our separation is fairly standard. We create a concept class in
which every concept contains an easy to learn information z and an information-theoretically
hard to learn information y = s(z) for some computationally hard to compute function s(z).
Knowing y is necessary for learning the concept class. A computationally unbounded learner
can find y by computing s(z). We then give a reduction from computing s() to learning
the concept class. The main difference between our constructions is the way we ensure
that z is always learnable while completely hiding s(z). It is easy to achieve this in the
distribution-specific setting. We can simply use the uniform distribution and then split the
domain in two parts: the first one used for encoding z and the second one for encoding s(z)
in an information-theoretically secure way (specifically, using a parity function defined by
s(z)). Such straightforward approach does not work in a distribution-independent setting
since the distribution can give weight 0 to the points encoding z. Our simple solution is
based on restricting the encoding of s(z) only to points of the domain that contain z as their
prefix. This ensures that, relative to the unknown distribution, the target function is either
close-to-constant or can be used to recover z. A somewhat similar technique was used by
Servedio (2000) is his computational hardness results for attribute-efficient learning.

Designing the concept class and establishing the desired separation for distribution-
independent CSQ learning (and thereby evolvability) is substantially more challenging, pri-
marily since both learning and proving lower bounds in this model are technically more
involved. Our computationally-unbounded learner is based on a strengthening of single-
ton (a class containing all functions that are positive on exactly one point of the domain)
learning algorithm of Feldman (2009a) that actually recovers the point where the single-
ton is positive. Our computational lower bound is based on the recent lower bound for
distribution-independent learning of conjunctions (Feldman, 2011). The lower bound is
weaker than the lower bound for parities used for our SQ separations and therefore we
obtain a hardness result based on fixed-parameter intractability of W[P]. Further our proof
requires a special error correcting code for recovering a small set from a partial erasure of
its elements. We design a simple code for this purpose using a Reed-Solomon code.
Upper bounds: In Theorem 9 we describe our learning result using an NP oracle. For any
concept class C which has polynomial query complexity and C ∈ P, we give an algorithm
that, given access to random (unlabeled) points from any distribution D, SQ oracle and NP
oracle our algorithm learns C. Here by C ∈ P we mean that the set of all binary strings
representing concepts in C is a language in P. This is a natural assumption and is easy to
verify for all the commonly-studied concept classes and representations. However, we note
that it is not satisfied by the (artificial) examples we use for our lower bounds. As we show

4. Given a boolean circuit, does it have a satisfying assignment of Hamming weight `?
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in Remarks 10 and 11 the examples are still learnable using an NP oracle and also that
there exist concept classes in P with purely computational lower bounds under a stronger
cryptographic assumption.

A variant of the SQ model which includes access to random points from the underlying
distribution was also introduced and studied by Kearns (1998). Our lower bounds and
the known characterizations of SQ complexity all apply to this variant. Hence for this
variant of the model, our algorithm provides an essentially matching upper bound for both
distribution-specific and distribution-independent settings. For the more restricted setting
(that is, without access to random points from D), we can still obtain this upper bound
when the input distribution is fixed by using a single polynomial-size random sample from
D as non-uniform advice to our algorithm.

One might again be tempted to apply the intuition from the PAC model where such
an upper bound is well-known and trivial. However, the result is completely incomparable
to an upper bound for PAC and relies on a recent result by Szörényi (2009). Szörényi
gives an ingenious argument proving that the query complexity of every SQ learner for C
that uses only queries from C which are consistent with all the previous oracle’s answers
is polynomially related to the query complexity of learning C. For comparison, we note
that the best known algorithms for learning some of the concept classes in Angluin’s exact
learning model (Angluin, 1988) use a substantially more powerful Σp

3 oracle (Bshouty et al.,
1996) (assuming, of course, that the polynomial hierarchy does not collapse).
Organization: We describe notation and some preliminaries in Section 2. Section 3 de-
scribes in greater detail the various statistical query learning models we consider. Section 4
contains the lower bounds for distribution-specific SQ learning, distribution-independent
SQ learning and distribution-independent CSQ learning. Section 5 gives the upper bounds
on SQ learning.

2. Notation and Preliminaries

2.1. Notation

In this paper, binary strings are strings over {−1, 1} and boolean functions have range
{−1, 1}. Let [k] denote the set {1, 2, . . . , k} and for any k bit string z, let S(z) = {i | zi =
−1} ⊆ [k]. Define MAJz : {−1, 1}k → {−1, 1} to be the majority function over S(z).
Formally for x ∈ {−1, 1}k, MAJz(x) = −1 if |S(x) ∩ S(z)|/|S(z)| ≥ 1/2 and MAJz(x) = 1
otherwise. Define PARz : {−1, 1}k → {−1, 1} as the parity function over the bits in S(z).
Formally, for x ∈ {−1, 1}k, PARz(x) = −1 if |S(x) ∩ S(z)| is odd and PARz(x) = 1 if
|S(x)∩S(z)| is even, i.e. PARz(x) =

∏
i∈S(z) xi. Define ORz : {−1, 1}k → {−1, 1} as the OR

function over the bits in S(z). Formally, for x ∈ {−1, 1}k, ORz(x) = −1 if |S(x)∩S(z)| ≥ 1
and ORz(x) = 1 otherwise.

2.2. Fourier Analysis

Under the uniform distribution over {−1, 1}n, the set of parity functions, 〈PARz〉z∈{−1,1}n
forms an orthonormal basis (Fourier basis) for real-valued functions defined over {−1, 1}n.
For a function f : {−1, 1}n → R, f̂(S(z)) = Ex∼Un [f(x)PARz(x)] is the Fourier coefficient of
f corresponding to the subset S(z); here Un denotes the uniform distribution over {−1, 1}n.
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Fourier analysis has been used extensively for learning with respect to the uniform distri-
bution (for a survey see (Mansour, 1994)). In particular, Kushilevitz and Mansour (1993)
showed that with blackbox access to a function f , all Fourier coefficients of f with magni-
tude at least θ, can be obtained in time poly(n, 1/θ). We refer to this as the KM algorithm
and use it frequently in our proofs.

3. Statistical Query Learning Models

In this section, we describe the various SQ models considered in this paper. Let X be
the instance space and suppose that n characterizes the representation size of each element
x ∈ X (e. g. X = {−1, 1}n or X = Rn). A concept class C over X is a subset of boolean
functions defined over X, where each concept c ∈ C is represented as a binary string; it is
required that there exist an efficient Turing machine that outputs c(x), given c ∈ C and
x ∈ X as inputs (cf. Kearns and Vazirani (1994)). Let D be a distribution over X. In the
SQ model (Kearns, 1998), the learning algorithm has access to a statistical query oracle,
STAT(f,D), to which it can make a query of the form (ψ, τ), where ψ : X×{−1, 1} → [−1, 1]
is the query function and τ is the (inverse polynomial) tolerance. The oracle responds with
a value v such that |ED[ψ(x, f(x))] − v| ≤ τ , where f ∈ C is the target concept. The
goal of the learning algorithm is to output a hypothesis, h : X → {−1, 1}, such that
errD(h, c) = Prx∼D[h(x) 6= c(x)] ≤ ε.

In this paper, we will use the following characterization of the SQ model due to Bshouty
and Feldman (2002) (see also Feldman, 2008): A statistical query ψ : X×{−1, 1} → [−1, 1]
is said to be target-independent if ψ(x, b) ≡ ψti(x) for some function ψti : X → [−1, 1]. A
statistical query is said to be correlational if ψ(x, y) ≡ yψcor(x) for some function ψcor :
X → [−1, 1]. Bshouty and Feldman (2002) showed that any statistical query (ψ, τ) (in
Kearns’ model) can be replaced by two queries, one of which is target-independent and
the other correlational, each with tolerance τ/2. We denote an oracle that accepts only
target-independent or correlational queries as SQ-O(f,D).

Distribution-Specific SQ Learning: We first define the notion of distribution-specific
SQ learning. It is required that the running time of the algorithm is polynomial in the
parameters n and 1/ε and also that the queries made by the algorithm are efficiently evalu-
atable5 and use a tolerance parameter τ , that is lower-bounded by some inverse polynomial
in n and 1/ε.

Definition 1 (Distribution-Specific SQ Learning) Let X be the instance space (with
representation size n), D a distribution over X and C a concept class over X. We say
that C is distribution-specific SQ learnable with respect to distribution D, if there exists
a randomized algorithm A that for every ε, δ > 0, every target concept f ∈ C, with ac-
cess to oracle SQ-O(f,D), outputs with probability at least 1 − δ, a hypothesis h such that
errD(h, f) ≤ ε. Furthermore, the running time of the algorithm must be polynomial in n
and 1/ε and 1/δ and the queries made to the oracle and the output hypothesis must be poly-
nomially evaluatable and have a tolerance τ that is lower-bounded by an inverse polynomial
in n, 1/ε.

5. By this we mean that given a description of a query function ψ and it’s input x, there exists an efficient
Turing machine that outputs ψ(x).
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To distinguish the computational complexity and information-theoretic (or statistical)
complexity of SQ learning, we use the notion of query complexity. The query complexity
for learning concept class C is the minimum number of queries required by any (possibly
unbounded) algorithm to learn C in the SQ model. It is worthwhile to point that when
defining query complexity, it is not required that the queries be efficiently evaluatable and
need not even have a small representation.

Definition 2 (Distribution-Specific SQ Query Complexity) Let X be the instance
space (with representation size n), D a distribution over X and C a concept class over
X. We say that the query complexity of learning C under distribution D to accuracy ε, is
bounded by q if there exists a (possibly computationally unbounded) algorithm that for every
concept f ∈ C, makes at most q queries to oracle SQ-O(f,D) outputs a hypothesis h, such
that errD(h, f) ≤ ε. The tolerance τ for the queries must be lower-bounded by an inverse
polynomial in n and 1/ε.

Distribution-Specific Weak SQ Learning: In the case of weak learning, the learning
algorithm is required only to output a hypothesis whose error is at most 1/2−γ, where 1/γ is
bounded by a polynomial in n. The definitions of distribution-specific weak SQ learning and
distribution-specific weak query complexity are identical to the definitions above (except
for the requirement on the error of the output hypothesis).

Distribution-Independent SQ Learning: In the case of distribution-independent SQ
learning, the same learning algorithm is required to output an accurate hypothesis for
all distributions. The definition of distribution-independent SQ learning and distribution-
independent query complexity can be made as in the case of distribution-specific learning
with this additional requirement. In the case of distribution-independent SQ learning,
weak and strong learning are equivalent (cf. Aslam and Decatur (1998)), hence we do not
consider the distribution-independent weak learning model. Formal definitions are provided
in Appendix A

Correlational Statistical Query Learning: The correlational statistical query (CSQ)
learning model was introduced by Feldman (2008) and he showed that this model is equiv-
alent to Valiant’s evolution model. In the CSQ model, the learner is only allowed to make
statistical queries that are correlational. Let (ψ, τ) be a query, where ψ : X → [−1, 1]
is the query function and τ is the (inverse polynomial) tolerance factor. A CSQ oracle,
CSQ-O(f,D), responds with a value v such that |Ex∼D[ψ(x)f(x)]− v| ≤ τ , where f ∈ C is
the target concept.

Distribution-specific CSQ learning and distribution-specific SQ learning are essentially
equivalent, as long as the learning algorithm has a random sample from the distribution as
non-uniform advice6. Thus, we do not consider the case of distribution-specific CSQ learning
separately. Also, in the case of CSQ learning, it does not make sense to consider models
which have access to random unlabeled examples, since this would make it the same as SQ
learning. The notion of distribution-independent CSQ learning and query complexity are
same as in the SQ case, except that the learning algorithm only has access to a CSQ-O(f,D)
oracle. Formal definitions are provided in Appendix A

6. See (Feldman, 2008) for more details.
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4. Computational Lower Bounds

In this section, we first state for completeness the result that for weak distribution-specific
SQ/CSQ learning, the query complexity and computational complexity is essentially the
same. This fact was observed by Blum et al. (1994) and follows easily from their character-
ization of SQ learning. Next, we show that for distribution-specific (strong) SQ learning,
distribution-independent SQ learning and distribution-independent (strong) CSQ learning,
the query complexity is significantly different from the computational complexity. In the
case of distribution-specific (strong) SQ learning and distribution-independent SQ learn-
ing, we show that there exists a concept class that has polynomial query complexity, but
cannot be efficiently learned in the respective SQ model unless RP = NP. In the case of
distribution-independent CSQ learning, the separation is based on a stronger assumption:
we show that there is a concept class C with polynomial query complexity (of CSQ learn-
ing), but cannot be learned efficiently unless every problem in W[P] has a randomized fixed
parameter tractable algorithm.

4.1. Weak Distribution-Specific SQ/CSQ Learning

Blum et al. (1994) showed that weak distribution-specific SQ learnability of a concept
class is characterized by a combinatorial parameter SQ-DIM(C,D), which characterizes the
number of nearly uncorrelated concepts in C and observed that this implies the equivalence
of query complexity and computational complexity in this model of learning. A short proof
sketch of the following theorem is provided in Appendix B for completeness.

Theorem 1 If a concept class C is weakly SQ learnable over a distribution D then there
exists a polynomial-size circuit that weakly SQ learns C over a distribution D.

4.2. Strong Distribution-Specific SQ/CSQ Learning

Let φ ∈ {−1, 1}m denote a 3-CNF formula over n variables (encoded as a string). Suppose
φ is satisfiable and let ζ(φ) denote the lexicographically first satisfying assignment of φ.
Throughout this section b ∈ {−1, 1}, x ∈ {−1, 1}m and x′ ∈ {−1, 1}n and let bxx′ denote
the m+n+1 bit string obtained by concatenating b, x and x′. For φ ∈ {−1, 1}m, where φ is
a satisfiable 3-CNF formula, define the function fφ,y : {−1, 1}m+n+1 → {−1, 1} as follows:

fφ,y(bxx
′) =

{
MAJφ(x) if b = 1
PARy(x

′) if b = −1

In other words, fφ,y is a function that over one half of the domain is the majority function,
MAJφ, and over the other half of the domain is the parity function, PARy. Note that the
function fφ,y is efficiently computable given the representation (φ, y). Define C1 to be the
following concept class:

C1 = {fφ,ζ(φ) | φ is satisfiable}.

Theorems 2 and 3 show that the query complexity of C1 is polynomial, but unless RP =
NP there is no polynomial time SQ algorithm for learning C1. The proofs are provided
in Appendix B. To prove that the query complexity is polynomial, the key idea is that
the learning algorithm only needs to (proper) learn majorities in the SQ model, which is
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easy. The learning algorithm can recover φ and solve for ζ(φ) (possibly using unbounded
computation). Thus, fφ,ζ(φ) can be exactly SQ learned using only polynomially many
queries. On the other hand, we show that an efficient SQ learning algorithm for C1 can
be used to recover a satisfying assignment of the 3-CNF formula φ. The key point to note
here is that parities are essentially invisible to statistical queries and hence the only way to
learn C1 is to obtain ζ(φ) using φ, which is not possible unless RP = NP.

Theorem 2 The query complexity of SQ learning C1 with respect to the uniform distribu-
tion U is at most m.

Theorem 3 C1 is not efficiently SQ learnable under the uniform distribution unless RP =
NP.

4.3. Strong Distribution-Independent SQ Learning

In this section, we consider the distribution-independent SQ learning model. As in the case
of distribution-specific SQ/CSQ learning, we construct a concept class, C2, such that C2

is distribution-independently SQ learnable, but not efficiently distribution-independently
SQ-learnable unless RP = NP.

Using the notation from Section 4.2 define gφ,y as:

gφ,y(xx
′) =

{
PARy(x

′) x = φ
1 otherwise

Thus, gφ,y is the function that equals PARy(x
′) on the part of the domain that has φ as

the prefix and is the constant function 1 otherwise. Define the concept class C2 as follows:

C2 = {gφ,ζ(φ) | φ is satisfiable}.

First, we show that the distribution-independent query complexity of SQ learning C2

is bounded by a polynomial in n. The key idea is that either the constant function 1 is
an accurate predictor (if the distribution has almost no mass on points that have φ as
a prefix), or else it is possible to recover the 3-CNF formula φ using statistical queries,
and then (using possibly unbounded computation) the assignment ζ(φ) can be obtained to
learn gφ,ζ(φ) exactly. On the contrary, we show that C2 cannot be efficiently learned in the
distribution-independent SQ model unless RP = NP. As in the previous case, we show that
an efficient SQ algorithm for learning C2 can be used to find a satisfying assignment to any
3-CNF formula φ, if it exists. The proofs of Theorems 4 and 5 are provided in Appendix B.

Theorem 4 The distribution-independent query complexity of SQ learning C2 is at most
2m+ 1.

Theorem 5 C2 is not efficiently distribution-independently SQ learnable unless RP = NP.
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4.4. Strong Distribution-Independent CSQ Learning

Showing a separation between the computational complexity and query complexity of
distribution-independent CSQ learning is significantly more involved. The separation in
this case is based on a stronger assumption: W[P] does not have randomized fixed parame-
ter tractable algorithms. A fixed parameter tractable algorithm for a decision problem (x, k)
is allowed to take running time f(k)p(|x|) where p is a polynomial and f is an arbitrary
function. A complete problem for W[P] is weighted circuit satisfiabiliy, i.e. given a circuit φ
and parameter k, does there exist a satisfying assignment of Hamming weight k? It is widely
believed that W[P] does not have randomized fixed-parameter tractable algorithms and such
an algorithm would also imply a subexponential time algorithm for circuit satisfiability (cf.
Downey and Fellows (1995)).

The construction relies on Feldman’s recent result (Feldman, 2011), where he shows
that the class of disjunctions cannot be learned (for information theoretic reasons) in the
distribution-independent CSQ model. The class of disjunctions on the other hand is weakly
learnable in the distribution-independent CSQ model (Feldman, 2008). Unlike in the case
of distribution-independent SQ model, this fact is required7 because any algorithm that
only uses correlational statistical queries can only get information about the distribution
by first finding some function that is (at least weakly) correlated with the target function
under that distribution.

Let φ ∈ {−1, 1}m denote a circuit (represented as a string) with n input variables.
For some parameter `, let ζ(φ) denote the lexicographicaly first satisfying assignment of
Hamming weight `. Let n′ = 3`n and let Enc : {−1, 1}n → {−1, 1}n′

be an encoding
such that for any string s ∈ {−1, 1}n with ` “-1” bits, Enc(s) ∈ {−1, 1}n′

has 3` “-1” bits.
Furthermore, recovering any ` of these 3` “-1” bits of Enc(s) allows us to reconstruct s. Such
encodings can be constructed using Reed-Solomon codes and are defined in Appendix C. We
will explain shortly the necessity for these codes for our construction. Let ξ(φ) = Enc(ζ(φ)).
Let y ∈ {−1, 1}n′

(recall that n′ = 3`n), let x ∈ {−1, 1}m, x′ ∈ {−1, 1}n′
and define

cφ,y : {−1, 1}m+n′ → {−1, 1} as follows:

cφ,y(xx
′) =

{
ORy(x

′) if x = φ
1 otherwise

Define the concept class.

C3 = {cφ,ξ(φ) | φ has a satisfying assignment of Hamming weight at most `}.

Theorem 6 shows that the query complexity of CSQ learning C3 is polynomial. This can
be proved using the fact that OR is weakly learnable and by modifying Feldman’s singleton
learning algorithm (Feldman, 2009a). This enables us to recover φ and the lexicographically
first satisfying assignment of φ can be easily constructed (using unbounded computation).
On the other hand, Theorem 7 shows that an efficient CSQ algorithm for learning C3,
implies a poly(2`, n) time for the weighted-circuit-SAT problem (given (φ, `), does there
exist a satisfying assignment for φ of Hamming weight `?). The reduction requires us to
set the accuracy of the learning algorithm to O(2−`) and also allows us to only recover

7. Note that the class of parities is not weakly learnable in the SQ model.

10
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one-third of the bits of the hidden OR. For this reason we need to use an OR that uses
ξ(φ) = Enc(ζ(φ)) rather than ζ(φ). Recovering a third of the bits of ξ(φ) is enough to
reconstruct ζ(φ).

Theorem 6 The distribution-independent CSQ query complexity of C3 is at most poly(n, 1/ε)

Theorem 7 C3 is not efficiently distribution-independently CSQ learnable, unless there
exists a randomized algorithm that determines whether or not a given circuit φ, has a
satisfying assignment of Hamming weight at most ` in time poly(2`, n).

5. Computational Upper Bounds

In this section, we consider the following question: how much computational power is
sufficient for learning in these models, given that the query complexity is polynomial?

In the setting where the learning algorithm has access to i.i.d. unlabeled examples from
the underlying distribution, we show that an NP-oracle suffices for learning. We show that
if the query complexity for a class C is polynomial, then there exists a polynomial-time
algorithm that with access to random unlabeled examples from the distribution and with
access to an NP-oracle learns C. We use Szörényi’s characterization of SQ learning, where
he shows that any algorithm that makes consistent queries from the class C, learns C.
We require an additional natural condition, C ∈ P, i.e. given c as a bit string, there is a
polynomial time algorithm that determines whether or not c is a valid representation of a
concept in C.

Definition 3 (Consistent Learner) (Szörényi, 2009) Let 〈(φi, τi)〉i≥i be the queries made
by an SQ learning algorithm A and let 〈vi〉i≥1 be the reponses of the SQ oracle. Algorithm
A is said to be consistent if for every j < i, |ED[φj(x)φi(x)]− vj | ≤ τj .

Szörényi (2009) proved the following result.

Theorem 8 (Szörényi, 2009) Let q be the query complexity of SQ learning concept class C
with respect to distribution D, then there exists τ , such that 1/τ is bounded by poly(q, n, 1/ε)
and any consistent algorithm that makes queries of the form (c, τ), where c ∈ C, eventually
makes a query of the form (c′, τ), where err(c′) ≤ ε/2. The total number of queries made
by the algorithm is at most poly(q, n, 1/ε).

As a corollary of this result, we can show that an NP-oracle suffices for statistical
query learning, when the learning algorithm also has access to unlabeled examples from
the underlying distribution. The key idea is that it is possible to find queries from C that
are consistent with the previous query responses by using a large enough sample and with
access to an NP-oracle. The following theorem follows easily from Theorem 8.

Theorem 9 Let q(C,D, ε) be the query complexity of SQ learning concept class C ∈ P with
respect to distribution D to accuracy ε. Then there exists an algorithm that for every target
function f ∈ C, for every distribution D, with access to random examples from distribution
D, oracle CSQ-O(f,D)8 and an NP-oracle, outputs c′ ∈ C, such that errD(c′, f) ≤ ε. The
running time of the algorithm is poly(q(C,D, ε), n, 1/ε).

8. Since we are assuming that our algorithm has access to i.i.d. random examples from the distribution an
oracle that only responds to correlational statistical queries is sufficient.
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Proof Let C be a concept class and assume that every c ∈ C has a representation that
uses at most s(n, 1/ε) bits for some polynomial s. Let m = (16s(n, ε−1)/τ(n, ε−1))2 log(1/δ).
Then a random sample of size m from distribution D satisfies the following,

∀c1, c2 ∈ C, |ED[c1(x)c2(x)]− 1

m

m∑
k=1

c1(xk)c2(xk)| ≤ τ/4

Now, consider the following algorithm. First make any query (c1, τ/4) and receive
response v1. Note that v1 is also a valid query response for the query (c1, τ). Given queries
(c1, τ/4), . . . , (ci−1, τ/4) with responses v1, . . . , vi−1. Find ci such that for every j < i it
holds simultaneously that, ∣∣∣∣∣ 1

m

m∑
k=1

ci(xk)cj(xk)− vj

∣∣∣∣∣ ≤ τ/2 (1)

Now it is easy to see that such a ci exists because the true target concept f satisfies this.
It is also easy to see that such a ci can be identified easily using an NP-oracle, since ci has
a polynomial-size representation (thus obtaining ci one bit at a time), and so the fact that
ci ∈ C and the relations (1) can be verified easily in polynomial time.

An algorithm that makes queries (c1, τ), (c2, τ), . . . and receives responses v1, v2, . . . is
consistent. Hence there will be some t = poly(q(C,D, ε)n, 1/ε) such that errD(ct, f) ≤ ε/2.

Remark 10 We note that the concept classes C1, C2, and C3 defined respectively in Sec-
tions 4.2, 4.3, and 4.4 are actually not recognized by a polynomial time Turing machine.
This is because given a string of the form (φ, ζ(φ)), it is not possible to verify that ζ(φ)
is indeed the lexicographically first satisfying assignment to φ unless P = NP. We note
however that even then these classes can be learned with access to an NP-oracle because
C1, C2, C3 ∈ PNP, i.e. with access to an NP-oracle, the lexicographically first satisfying
assignments can be constructed (one bit at a time).

Remark 11 Under stronger cryptographic assumptions, we can construct classes C ′1, C
′
2, C

′
3 ∈

P that are also not efficiently learnable in the respective statistical query models. The func-
tions constructed can be of the form (s(z), z), where s(z) is easy to find information and s
is a one-way permutation (that is cannot be inverted efficiently). An additional implication
of such constructions is average-case computational hardness: learning is hard for most
functions in C ′1/C

′
2/C

′
3.
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Appendix A. Models

We give formal definitions omitted in Section 3.

Distribution-Independent SQ Learning:

Definition 4 (Distribution-Independent SQ Learning) Let X be the instance space
(with representation size n) and C a concept class over X. We say that C is distribution-
independently SQ learnable if there exists a randomized algorithm A that for every ε, δ > 0,
every target concept f ∈ C and for every distribution D over X, with access to oracle
SQ-O(f,D), outputs with probability at least 1− δ, a hypothesis h such that errD(h, f) ≤ ε.
Furthermore, the running time of the algorithm must be polynomial in n and 1/ε and 1/δ and
the queries made to the oracle and the output hypothesis must be polynomially evaluatable
and have a tolerance τ that is lower-bounded by an inverse polynomial in n, 1/ε.

Definition 5 (Distribution-Independent SQ Query Complexity) Let X be the in-
stance space (with representation size n) and C a concept class over X. We say that the
distribution-independent query complexity of learning C to accuracy ε is bounded by q, if
there exists a (possibly computationally unbounded) algorithm that for every concept f ∈ C,
every distribution D over X makes at most q queries to oracle SQ-O(f,D) outputs a hy-
pothesis h, such that errD(h, f) ≤ ε. The tolerance τ for the queries must be lower-bounded
by an inverse polynomial in n and 1/ε.

Distribution-Independent CSQ Learning:

Definition 6 (Distribution-Independent CSQ Learning) Let X be the instance space
(with representation size n) and C a concept class over X. We say that C is distribution-
independently CSQ learnable if there exists a randomized algorithm A that for every ε, δ > 0,
every target concept f ∈ C and for every distribution D over X, with access to oracle
CSQ-O(f,D), outputs with probability at least 1−δ, a hypothesis h such that errD(h, f) ≤ ε.
Furthermore, the running time of the algorithm must be polynomial in n, 1/ε and 1/δ and
the queries made to the oracle and the output hypothesis must be polynomially evaluatable
and have a tolerance τ , that is lower-bounded by a polynomial in n, 1/ε.

As in the previous cases, one can define the distribution-independent query complexity
of CSQ learning. This captures the information-theoretic complexity of CSQ learning.

Definition 7 (Distribution-Independent CSQ Query Complexity) Let X be the in-
stance space (with representation size n) and C a concept class over X. We say that the
distribution-independent query complexity of learning C to accuracy ε is bounded by q, if
there exists a (possibly computationally unbounded) algorithm that for every concept f ∈ C,
every distribution D over X makes at most q queries to oracle CSQ-O(f,D) outputs a hy-
pothesis h, such that errD(h, f) ≤ ε. The tolerance τ for the queries must be lower-bounded
by an inverse polynomial in n and 1/ε.
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Appendix B. Omitted Proofs

B.1. Weak Distribution-Specific SQ/CSQ Learning

Proof [of Theorem 1] SQ-DIM(C,D, γ) is the size of the largest subset S ⊆ C, such that
for every c1, c2 ∈ S, errD(c1, c2) = Prx∼D[c1(x) 6= c2(x)] ≥ 1/2− γ. A simple weak-learning
algorithm just tries every concept from S9, and at least one of them will have error less than
1/2−γ with the target function f (since S is the largest such subset, if this weren’t the case
adding the target function f to S would give a larger subset with the same property). Blum
et al. (1994) showed that SQ-DIM(C,D, γ) is polynomially related to the query complexity
of weak SQ learning C under D to accuracy 1/2− γ.

B.2. Strong Distribution-Specific SQ Learning

Proof [of Theorem 2] Let fφ,ζ(φ) ∈ C1 be the target function. We show how to obtain φ using
statistical queries. For i ∈ {1, . . . ,m}, define the function ψi : {−1, 1}m+n+1 × {−1, 1} →
[−1, 1] as follows:

ψi(bxx
′, y) =

{
0 if b = −1
xiy if b = 1

Then, observe that EUm+n+1 [ψ(bxy, fφ,ζ(φ)(bxy))] = (1/2)EUm [xiMAJφ(x)]. It is well

known (see for example O’Donnell (2003)) that if φi = −1 (i.e. the ith bit is part of the
majority function) then EUm [xiMAJφ(x)] = Ω(1/

√
m) and 0 otherwise. Hence, by setting

τ = Θ(1/
√
m), the query (ψi, τ) reveals the bit φi. Thus, using at most m = O(n3) statisti-

cal queries, we obtain φ. Now, it is easy to obtain (possibly using unbounded computation)
the value ζ(φ) and thus obtain the function, fφ,ζ(φ).

Proof [of Theorem 3] Suppose to the contrary that A is a (possibly randomized) algorithm
that learns C1 to error at most 0.1 (in fact, to any value noticeably lower than 1/4) in
polynomial time. We show that using A it is possible (with high probability) to find
a satisfying assignment to any 3-CNF formula φ, if one exists. Thus, failure to find a
satisfying assignment implies that φ is unsatisfiable.

Let φ be a 3-CNF instance. Suppose φ is a satisfiable, so that fφ,ζ(φ) ∈ C1; we show
that in this case a solution to φ can be obtained with high probability. Suppose A makes
q statistical queries each with tolerance τ to learn C1. We show that we can simulate any
statistical query (ψ, τ) with respect to fφ,ζ(φ) efficiently. The queries made by A to the
oracle SQ-O may be target-independent or correlational. Below, we consider the two cases:

1. Let (ψti, τ) be a target-independent query; we need to return an (additive) τ -approximation
to the value EUm+n+1 [ψ(bxx′)]. This is easily achieved by drawing a sample of size

Õ(1/τ2) from the uniform distribution and returning the empirical estimate.

2. Let ψcor be the correlational query. In this case, we need to return an (additive) τ -
approximation to the value EUm+n+1 [ψcor(bxx′)fφ,ζ(φ)(bxx

′)]. For b ∈ {−1, 1}, define

9. Note that this is a non-uniform algorithm, since the set S needs to be given as advice to the algorithm
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ψcor
b (xx′) ≡ ψcor(bxx′). Then,

EUm+n+1 [ψcor(bxx′)fφ,ζ(φ)(bxx
′)] =

1

2
EUm+n [ψcor

1 (xx′)MAJφ(x)]+
1

2
EUm+n [ψcor

−1 (xx′)PARζ(φ)(x
′)]

It suffices to find τ -approximations to both the terms in the above expression. To
obtain a τ -approximate estimate of EUm+n [ψcor

1 (xx′)MAJφ(x)], as in the earlier case,

we can draw a sample of size Õ(1/τ2) from Um+n and return the empirical estimate
(since we can efficiently compute the functions ψcor

1 and MAJφ).

We show that either 0 is a τ -approximation to EUm+n [ψcor
−1 (xx′)PARζ(φ)(x

′)] or we find
a satisfying assignment to φ using Fourier analysis. Observe that EUm+n [ψcor

−1 (xx′)PARζ(φ)(x
′)]

is simply the Fourier coefficient of ψcor
−1 corresponding to ζ(φ) (or actually the set

S(ζ(φ)) = {m + i | ζ(φ)i = −1} ⊆ [m + n]). We know that all Fourier coeffi-
cients of ψcor

−1 of magnitude larger than τ/2 can be estimated to accuracy τ/4 using
the KM algorithm in time poly(n, 1/τ) (see Section 2.2 or Kushilevitz and Mansour
(1993)). Furthermore, the number of such coefficients is polynomial in n, 1/τ . We
check whether any such coefficient (interpretted as a string of length n) is a satisfying
assignment of φ. If we find an assignment, we are done; if not we know that the

coefficient |ψ̂cor
−1 (S(ζ(φ)))| ≤ τ , since ζ(φ) is a solution to φ and we would have iden-

tified it as such, had it been in the list of heavy coefficients. Thus, 0 is an (additive)
τ -approximate estimate to the term EUm+n [ψcor

−1 (xx′)PARζ(φ)(x
′)].

Thus, we have shown that we can either find a satisfying assignment to φ or simulate the
SQ-O oracle response satisfactorily to all queries made by algorithm A. In the latter case,
the algorithm outputs h such that errUm+n+1(h, fφ,ζ(φ)) ≤ 0.1, i.e. EUm+n+1 [h(bxx′)fφ,ζ(φ)(bxx

′)] ≥
4/5. Let hb(xx

′) ≡ h(bxx′), then

EUm+n+1 [h(bxx′)fφ,ζ(φ)(bxx
′)] =

1

2
EUm+n [h1(xx

′)MAJφ(x)] +
1

2
EUm+n [h−1(xx

′)PARζ(φ)(x
′)]

The above equation implies that EUm+n [h−1(xx
′)PARζ(φ)(x

′)] = ĥ−1(S(ζ(φ))) ≥ 3/5, where

ĥ−1(S(ζ(φ))) is the Fourier coefficient of h−1 corresponding to the set S(ζ(φ)). Thus iden-
tifying all large coefficients of h−1, by the KM algorithm, and checking whether any of the
coefficients (when interpreted as a string of length n) satisfies φ, a satisfying assignment of
φ is obtained (since ζ(φ) has a large Fourier coefficient).

Thus, if φ is satisfiable, using A it is possible to find, with high probability, a satisfying
assignment to φ. If we fail to find the satisfying assignment, then φ is unsatisfiable. Hence,
an algorithm to efficiently SQ learn C1 does not exist unless RP = NP.

B.3. Strong Distribution-Independent SQ Learning

Proof [of Theorem 4] Let gφ,ζ(φ) be the target function, D the target distribution and let
ε > 0 be the target error rate. We first test if the hypothesis, the constant 1 function,
is ε-accurate. This can be tested using a single correlational statistical query (1, ε/4). If
the value returned is at least 1 − 3ε/4, then ED[gφ,ζ(φ)(xx

′)] ≥ 1 − ε, i.e. the constant 1
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hypothesis is ε-accurate. If not, we know that gφ,ζ(φ) is −1 on at least ε/4 fraction of the
domain (under the target distribution D).

Now, suppose that PrD[gφ,ζ(φ)(xx
′) = −1] ≥ ε/4. For i = 1, . . . ,m, define ψi :

{−1, 1}m+n → [−1, 1] as the following function: ψi(xx
′) = 1, if xi = 1 and ψi(xx

′) = 0
otherwise.

Consider the following expectation,

ED[ψi(xx
′)− gφ,ζ(φ)(xx′)ψi(xx′)]

If φi = −1 (i.e. the ith bit of the representation of the 3-CNF formula φ is −1), then
gφ,ζ(φ)(xx

′) = 1 for all points where ψi(xx
′) 6= 0. This is because gφ,ζ(φ) is the constant 1

function on points which do not have φ as a prefix, and if ψi(xx
′) 6= 0, then xi = 1 6= φi.

Thus, for all points ψi(xx
′) = gφ,ζ(φ)(xx

′)ψi(xx
′) and hence the value of the above expecation

is exactly 0.
On the other hand, if φi = 1, then whenever gφ,ζ(φ)(xx

′) = −1, ψi(xx
′) = 1. When

gφ,ζ(φ)(xx
′) = 1, ψi(xx

′)−gφ,ζ(φ)(xx′)ψi(xx′) = 0. Recall that PrD[gφ,ζ(φ)(xx
′) = −1] ≥ ε/4,

thus the above expectation is at least ε/2.
As ED[ψi(xx

′) − gφ,ζ(φ)(xx
′)ψi(xx

′)] = ED[ψi(xx
′)] − ED[gφ,ζ(φ)(xx

′)ψi(xx
′)], an ε/8

accurate estimate to the above expectation can be obtained by making a target independent
query (ψi, ε/16) and a correlational query (ψi, ε/16). Thus, by looking at the query responses
it is possible to determine whether φi = 1 or φi = −1.

Using 2m queries, each bit of φ can be determined, and then ζ(φ) can be obtained, if
necessary by brute force, to output gφ,ζ(φ).

Proof [of Theorem 5] Suppose to the contrary and let A be a (possibly randomized) algo-
rithm that efficiently learns C2 in the distribution-independent SQ model. We show that if
φ is a satisfiable 3-CNF formula then, using A, a satisfying assignment can be constructed
with high probability.

Let φ be a 3-CNF formula that is satisfiable, so that gφ,ζ(φ) ∈ C2. Let D2 be the
distribution defined as follows: D2(xx

′) = 2−n if x = φ, D2(xx
′) = 0 otherwise; thus, D2 is

the uniform distribution on strings of the form φx′.
Let gφ,ζ(φ) be the target concept from C2 and D2 the target distribution. Suppose

ε ≤ 1/4. We run A to learn gφ,ζ(φ). We need to show that we can simulate the queries made
by A to the oracle SQ-O(gφ,ζ(φ), D2).

As in the proof of Theorem 3, response to a target-independent query can be simulated
by drawing a sample from D2 of size Õ(1/τ2) and returning the empirical estimate. In the
case of correlational queries also, the main idea is similar to that used in the proof of Theo-
rem 3. Let (ψcor, τ) be a correlational query, define ψcor

φ : {−1, 1}n → [−1, 1] to be the func-
tion ψcor

φ (x′) = ψcor(φx′). Thus, ED2 [ψcor(xx′)gφ,ζ(φ)(xx
′)] = EUn [ψcor

φ (x′)PARζ(φ)(x
′)].

This is just the Fourier coefficient of ψcor
φ on the subset S(ζ(φ)). Thus, we obtain all large

(of magnitude greater than τ/2) Fourier coefficients of ψcor
φ and check whether any of them

(i.e. their string representations of length n) are a satisfying assignment to φ. If not, then
0 is valid (τ -approximate) answer to the query (ψcor, τ).

Thus, we can simulate access to the SQ-O(gφ,ζ(φ), D2) oracle to A or else we find a
satisfying assignment to φ. Suppose we don’t find a satisfying assignment to φ and A runs
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to completion, then for the output hypothesis, h, errD2(h, gφ,ζ(φ)) ≤ 1/4 or equivalently,
ED2 [h(xx′)gφ,ζ(φ)(xx

′)] ≥ 1/2. Again define hφ(x′) = h(φx′), so that EUn [hφ(x′)PARζ(φ)(x
′)] ≥

1/2. Thus, looking at the heavy Fourier coefficients of hφ reveals a satisfying assignment to
φ. The above algorithm works correctly with high probability.

If we are unable to find a satisfying assignment of φ, then we report φ as being unsat-
isfiable. Thus, we get a randomized polytime algorithm for 3-CNF.

Appendix C. Strong Distribution-Independent CSQ Learning: Lower
Bounds

In this section, we provide details omitted from Section 4.4. We first show that the class of
disjunctions is weakly learnable in the CSQ model (distribution-independently).

C.1. Weak Distribution-independent CSQ Learning Disjunctions

Let DISJn = {ORz | z ∈ {−1, 1}n} be the class of disjunctions over n variables. Let
x ∈ {−1, 1}n and let x1, x2, . . . , xn be the input bits. Let W = {−1, x1, x2, . . . , xn} be a set
of n+ 1 functions, where −1 is the constant function that is −1 everywhere, and xi is the
function w(x) = xi. The following simple lemma shows that for every z ∈ {−1, 1}n and ev-
ery distribution D over {−1, 1}n, there exists w ∈ W such that ED[ORz(x)w(x)] ≥ 1/(2n).
Thus, this implies that the class DISJn is efficiently weakly distribution-independently CSQ
learnable. Feldman (2008) gives a proof of this lemma, but we include a proof for complete-
ness.

Lemma 12 For every ORz ∈ DISJn and every distribution D over {−1, 1}n, there exists
w ∈ W such that ED[ORz(x)w(x)] ≥ 1/(2n).

Proof For a string z ∈ {−1, 1}n, recall that S(z) = {i | zi = −1}. Let βz(x) =
∑

i∈S(z) xi−
|S(z)| + 1. Then observe that ORz(x) = sign(βz(x)), since ORz(x) = 1 if all xi such that
i ∈ S(z) are 1, in which case βz(x) =

∑
i∈S(z) xi − |S(z)| + 1 = 1, otherwise βz(x) =∑

i∈S(z) xi − |S(z)|+ 1 is at most −1.
Note that βz(x) =

∑
i∈S(z) xi−|S(z)|+1 is always an odd integer, and hence |βz(x)| ≥ 1

for all x. Thus, for all x, βz(x) sign(βz(x)) ≥ 1.
Then for any distribution D over {−1, 1}n we have,

Ex∼D[βz(x)ORz(x)] = Ex∼D[βz(x) sign(βz(x))] ≥ 1

Hence, either ED[(−1) · ORz(x)] ≥ 1/(2(|S(z)| − 1)) or there exists i ∈ S(z) such that
ED[xiORz(x)] ≥ 1/(2|S(z)|).

C.2. Encoding Sparse Strings

We give here a simple implementation of the encoding of sparse strings described in Section
4.4. Let s be a string of length n that contains at most ` “−1”-bits. We want to encode s
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as a string, Enc(s), of length 3`n that has at most 3` “−1”-bits such that identifying any `
of the 3` positions that have “−1” suffice to recover the string s. For a string s′ of length
3`n, let Dec(s′) denote the (unique) string of length n, such that Enc(Dec(s′)) = s′, or the
null string if no such string exists.

For simplicity, let n be a power of 2, say n = 2k. Given s ∈ {−1, 1}n with at most `
“-1” bits, do the following: Identify the set S = {i | si = −1}; notice that |S| = `. We
use the Reed-Solomon code to encode the elements of S using a set T , |T | = 3` such that
identifying any subset of T of size ` allows us to recover S. This is done by interpretting
i ∈ S as elements of the field F2k and constructing a polymial of degree `−1, using elements
of S as the coefficients. The set T contains an evaluation of this polynomial at 3` different
points in F2k . Clearly, identifying any ` elements of T is enough to perform interpolation
and hence obtain S. Now, we can encode T using a string of length 3`n, with at most 3`,
“-1” bits as follows: Let T = {t1, . . . , t3`} and consider the string s′ = Enc(s) as 3` blocks
of length n. In the ith block, only the tthi bit is −1 and the rest are all 1. Notice, that
although ti are technically elements of F2k , they can be interpretted as integers less than n.
Thus identifying the positions of any `, “-1” bits of s′ allows for decoding and recovering
s. Denote by Dec(s′) the string s, if s′ is any string that has at least ` “-1” bits and must
have been a (corrupted) version of Enc(s).

C.3. Omitted Proofs

Proof [of Theorem 6] Let cφ,ξ(φ) be the target concept from C3 and let ε > 0 be the target
error rate. We first test the hypothesis that is constant 1 everywhere. This can be tested
using the correlational query (1, ε/4), where 1 is the constant 1 function. If the query
response is greater than 1 − 3ε/4, then ED[cφ,ξ(φ)(xx

′)] ≥ 1 − ε and hence the constant 1
function is an ε-accurate hypothesis and we are done. Otherwise, PrD[cφ,ξ(φ)(xx

′) = −1] ≥
ε/4.

Let φ be the encoding of the 3-CNF-SAT formula corresponding to the target function
cφ,ξ(φ). Let D1 be the marginal distribution over the first m bits of the target distribution
D. Suppose h : {−1, 1}m → {−1, 1} is a function satisfying the two properties: (i) h(φ) = 1,
and (ii) PrD1 [h(x) = 1 ∧ x 6= φ] ≤ ε/(100n).

Let D2 be the distribution D conditioned on the first m bits being φ, i.e. D2(x
′) =

D(φx′)/D1(φ). LetW be as in Lemma 12 and let w ∈ W be such that ED2 [ORξ(φ)(x
′)w(x′)] ≥

1/(2n). Then, define the function hw(xx′) = w(x′) if h(x) = 1 and hw(xx′) = 0 otherwise.
Note that,

ED[hw(xx′)cφ,ξ(φ)(xx
′)] ≥ Pr

D1

[x = φ]ED2 [ORξ(φ)(x
′)w(x′)]− Pr

D1

[hw(xx′) = 1 ∧ x 6= φ]

≥ ε

4
· 1

2n
− ε

100n

Now define hwi : {−1, 1}m+n → [−1, 1] to be the function, where hwi (xx′) = w(x′) if
h(x) = 1 and xi = 1, and hwi (xx′) = 0 otherwise. Now note that if φi = 1, ED[hwi (xx)cφ,ξ(φ)(xx

′)] ≥
ε/(8n)−ε/(100n), as in the previous case. On the other hand if φi = −1, then ED[hwi (xx′)cφ,ξ(φ)(xx

′)] ≤
ε/(100n).

This gap between the expectations in the two cases is large enough that the response
to the correlational statistical query (hwi , ε/(100n)) distinguishes the case when φ = 1 and
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φ = −1. Thus m such correlational queries can be used to exactly determine φ and then
(possibly using unbounded computation) ξ(φ) may be determined to identify cφ,ξ(φ).

Now, suppose we did not know that h satisfied the properties (i) and (ii), mentioned
above. We could still carry out the operations described above to come up with a candidate
φ̃ and guess cφ̃,ξ(φ̃) to be the target concept. We can then simply make the correlational

query (cφ̃,ξ(φ̃), ε/4) to check whether cφ̃,ξ(φ̃) is an ε-accurate hypothesis. Note that if h did

indeed satisfy the properties (i) and (ii), then φ̃ = φ.
The last part required to complete the proof is to show that it is easy to construct a

random hypothesis h that satisfies properties (i) and (ii) with non-negligible (inverse poly-
nomial) probability. Then, several such hypotheses may be generated and each tested until
the right one (or one that is good enough) is found. But, this is exactly what Feldman’s
algorithm for CSQ learning singletons does Feldman (2009a).

Proof [of Theorem 7] Suppose that there exists an efficient algorithm, A, that distribution-
independently CSQ learns C3. Let φ be a circuit formula. We show that if φ has a satisfying
assignment of Hamming weight at most `, then using A we can find such a solution, with
high probability.

Let z = ξ(φ), S(z) = {i | zi = −1} and suppose that |S(z)| = k, where k ≤ 3`. Note
that ζ(φ) has Hamming weight at most `. Then, the function ORz can be expressed as the
following polynomial.

ORz(x
′) = −1 + 2

∏
i∈S(z)

1 + x′i
2

= −1 + 2−k+1
∑

T⊆S(z)

χT (x′)

where χT (x′) is the parity function over T . Let tz be the polynomial,

tz(x
′) = −1 + 2−k+1 + 2−k+1

∑
T⊆S(z)
|T |>k/3

χT (x′)

Define Dz to be the distribution where Dz(x
′) = |tz(x′)|/(

∑
x′ |tz(x′)|). Feldman (2011)

showed that sign(tz(x
′)) = ORz(x

′), and hence for all x′, Dz(x
′)ORz(x

′) = Un′(x′)tz(x
′),

where Un′ is the uniform distribution over n′ bits.
Define D to be the distribution over {−1, 1}m+n′

, where D(xx′) = Dz(x
′) if x = φ and

D(xx′) = 0 if x 6= φ. Now, we run algorithm A to learn C3 to accuracy ε = 2−k−2, where
D is the target distribution and cφ,ξ(φ) is the target concept. We need to show that we can

simulate oracle CSQ-O for any query (ψ, τ). Let ψφ : {−1, 1}n′ → [−1, 1] be the function
where ψφ(x′) = ψ(φx′).

Note that,

ED[ψ(xx′)cφ,ξ(φ)(xx
′)] = EDz [ψφ(x′)ORz(x

′)] = EUn′ [ψφ(x′)tz(x
′)]
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Then observe that,

EUn′ [ψφ(x′)tz(x
′)] = (−1 + 2−k+1)ψ̂φ(∅) + 2−k+1

∑
T⊆S(z)
|T |>k/3

ψ̂φ(T )

Note that the only Fourier coefficients of ψφ that matter are those corresponding to
the empty set and sets T ⊆ S(z) such that |T | ≥ k/3. There are at most 2k subsets of
S(z). Using the KM algorithm, we can identify in time polynomial in 2k, n, 1/τ , all Fourier
coefficients of ψφ whose magnitude is at least τ/2k. Now if there exists a subset T ⊆ S(z)

such that |ψ̂φ| ≥ τ/2−k and |T | > k/3, then it will be in the list of coefficients obtained
above. But note that T can be converted into a string of length n′, say σ(T ), such that
Dec(σ(T )) = ζ(φ) which is a satisfying assignment of φ. Thus, for each heavy (magnitude
≥ τ/2k) Fourier coefficient of ψφ, we check if we get a satisfying assignment to φ. If not,
then 0 is a valid answer (τ -approximate) to the query (ψ, τ).

The algorithm, A, outputs a hypothesis h. Let hφ(x′) = h(φx′). Note that

ED[h(xx′)cφ,ξ(φ)(xx
′)] = EUn′ [hφ(x′)tz(x

′)]

= (−1 + 2−k+1)ĥφ(∅) + 2−k+1
∑

T⊆S(z)
|T |>k/3

ĥφ(T ) ≥ 1− 2ε = 1− 2−k−1 .

This means that ∑
T⊆S(z)
|T |>k/3

ĥφ(T ) ≥ 1/2.

Thus, as for the queries, identifying and decoding all large (magnitude ≥ 0.1/2k) Fourier
coefficients of hφ reveals a satisfying assignment of φ of Hamming weight at most `.
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