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Abstract

We study the power of two models of faulty teachers in Valiant’s PAC learning
model and Angluin’s exact learning model. The first model we consider is learning
from an incomplete membership oracle introduced by Angluin and Slonim (1994).
In this model, the answers to a random subset of the learner’s membership queries
may be missing. The second model we consider is random persistent classification
noise in membership queries introduced by Goldman, Kearns, and Schapire (1993).
In this model, the answers to a random subset of the learner’s membership queries
are flipped.

We show that in both the PAC and the exact learning models the incomplete
membership oracle is strictly stronger than the noisy membership oracle under the
assumption that the problem of PAC learning parities with random classification
noise is intractable.

We also show that under the standard cryptographic assumptions the incomplete
membership oracle is strictly weaker than the perfect membership oracle. This gen-
eralizes the result of Simon (2004) and resolves an open question of Bshouty and
Eiron (2002).

Key words: Models of learning, PAC, exact learning, membership query.

∗ Corresponding author.
Email addresses: vitaly@post.harvard.edu (Vitaly Feldman),

sshah@fas.harvard.edu (Shrenik Shah).
1 Part of the work done while the author was at Harvard University supported by
grants from the National Science Foundation NSF 0432037 and NSF 0427129.

Preprint submitted to Elsevier 3 September 2008



1 Introduction

Modeling and handling of faulty information is one of the most important
and well-studied topics in learning theory. In this paper we study two natural
models of a faulty teacher, where a teacher is represented by access to a mem-
bership oracle. A membership oracle allows the learning algorithm to obtain
the value of the unknown target function f on any point in the domain. In
the first model we consider, the faulty teacher answers “I don’t know” with
some probability p to every membership query (MQ) of the learner. Further-
more, if the learner asks the same membership query again, the answer will be
the same (in other words, it persists). This model was introduced by Angluin
and Slonim [3] in the context of Angluin’s exact learning model [1]. Such a
faulty membership oracle is referred to as incomplete. Angluin and Slonim
showed that monotone DNF formulas are exactly learnable with incomplete
membership queries for constant p. This result was improved by Bshouty and
Eiron who gave an algorithm that can learn monotone DNF even when only
an inverse polynomial fraction of membership queries is answered [8]. Bshouty
and Owshanko showed learnability of regular sets in this model [9], Goldman
and Mathias showed learnability of k-term DNF [15], and Chen showed learn-
ability of some restricted classes of DNF in this model [10]. Given a number
of strong positive results for this model a natural question to ask is whether
this model is equivalent to learning with perfect membership queries [8]. This
question was addressed by Simon who answered it in the negative for exact
learning with proper equivalence queries (that is, the hypothesis in the equiv-
alence query has to belong to the concept class that is learned) [24]. In this
work (Theorem 4.1) we give a more general version of this result that also
applies to unrestricted equivalence queries and the PAC model. Our result
shows that if there exists a concept class not learnable in the exact model (or
the PAC model), then the exact learning model with MQs (the PAC model
with MQs) is stronger then the exact learning model with incomplete MQs 2

(the PAC model with incomplete MQs, respectively). In particular, if one-way
functions exist, then incomplete MQs are strictly weaker than perfect ones.

The other model of a faulty teacher we study is random persistent noise in
membership queries defined by Goldman, Kearns, and Schapire [14] in the
context of exact identification using membership queries alone. In this model,
the teacher flips the label of the answer to every membership query with some
probability η. As in the incomplete MQ model, the answers persist. It is easy to
see that learning is this model is at least as hard as learning in the incomplete
MQ model. Among the few techniques that manage to exploit noisy MQs is the
result of Goldman et al. who prove that certain classes of read-once formulas

2 The main idea of this simple result is similar to that of Simon and we include it
primarily for completeness.
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are exactly learnable in this model [14]. It is also not hard to see that concept
classes that are exactly learnable using the Kushilevitz-Mansour algorithm
[20] can be learned from noisy MQs by using noise tolerant versions of the
Kushilevitz-Mansour algorithm given by Jackson, Shamir, and Shwartzman
[17] and Feldman [12]. These classes include juntas and log n-depth decision
trees [20]. In addition, DNF expressions are known to be PAC learnable with
respect to the uniform distribution using noisy membership queries [17]. Ex-
act learnability of monotone DNF with noisy membership queries is an open
problem [3].

In the main result of this work, we demonstrate that under the assumption
that parities are not learnable with random classification noise, the incomplete
membership oracle is strictly stronger than the noisy one. Formally, we prove
the following results.

Theorem 1.1 If the problem of PAC learning parities over the uniform distri-
bution with random classification noise of rate η is intractable, then there exists
a concept class C that is learnable with equivalence and incomplete membership
queries, but not learnable from equivalence and noisy membership queries of
error rate η.

We also give a version of this result for the PAC model.

Theorem 1.2 If the problem of PAC learning parities over the uniform dis-
tribution with random classification noise of rate η is intractable, then there
exists a concept class C that is PAC learnable with incomplete membership
queries, but not PAC learnable (even weakly) from noisy membership queries
of error rate η.

Our separations are optimal in the sense that they separate learning with any
rate of “I don’t know”s from learning with a constant rate of noise.

Learning of parities from noisy random and uniform examples (which we re-
fer to as the noisy parity problem) is a notoriously hard open problem. It is
known to be equivalent to decoding of binary linear codes generated randomly
— a long-standing open problem in coding theory (cf. [12]). For example, the
McEliece cryptosystem is based, among other assumptions, on the hardness of
this problem [22]. While the average-case hardness of decoding binary linear
codes is unknown, a number of related worst-case problems are known to be
NP-hard (cf. [5,4,26]). Blum, Furst, Kearns, and Lipton use the assumption
that this problem is hard to build simple pseudorandom generators [6]. Fur-
thermore, Feldman, Gopalan, Khot, and Ponuswami show that this problem
is central to PAC learning with respect to the uniform distribution by reduc-
ing a number of other well-known open problems to it [13]. Other evidence of
its hardness include non-learnability in the statistical query model of Kearns
[18] and hardness of a generalized version of this problem that was shown by
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Regev [23]. The only known non-trivial algorithm for learning parities with
noise is a 2O(n/ log n)-time algorithm by Blum, Kalai, and Wasserman [7].

The general idea behind these separations is simple. Given a concept class C
that is hard to learn in a particular model, one can construct a new class F
in which every concept is almost identical to a concept c ∈ C, but includes
the description of c hidden in an exponentially small subset of the domain.
This description is encoded in a way that is hard to read in the weaker model
of membership oracle, but easy in the stronger model. Then, in the stronger
model we can learn the concept class just by reading this additional infor-
mation, while in the weaker model, with high probability, it is impossible to
discover the added description. This reduces learning of F to learning of C,
which is assumed to be hard.

To separate learning with an incomplete membership oracle from learning with
a perfect membership oracle, we use a description that requires learning of a
large number of bits to discover a single bit of the description. With high
probability, an incomplete oracle will fail to uncover any of the bits of the
description. The same idea was used by Simon [24].

To separate learning with a noisy membership oracle from learning with an
incomplete one, we use a Hadamard code to encode the secret. In addition,
via a suitable cryptographic primitive, we “convert” learning with membership
queries to learning from random and uniform examples. This encoding makes
discovering the secret equivalent to learning of parity functions from random
and uniform examples. In particular, it is easy given incomplete labels but
hard given noisy labels. We are not aware of any similar techniques having
been used before and hope that our technique will find other applications.

1.1 Organization

We define the relevant models in Section 2. Separation of learning with an
incomplete membership oracle from learning with a noisy one is presented in
Section 3. Separation of learning with an incomplete membership oracle from
learning with a perfect membership oracle is presented in Section 4.

2 Preliminaries

We study learning with membership queries in two well-known models of learn-
ing: Valiant’s PAC learning model [25] and Angluin’s exact learning model [1].
We start by giving brief definitions of these models.
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2.1 Learning Models

In both models a learning algorithm is trying to learn a target concept c :
X → {0, 1} from a concept class C. The set X is called the domain, and in
this work we will assume X = {0, 1}n. It is assumed that every c ∈ C can be
described using a fixed representation scheme associated with C (e.g. Boolean
formulas or circuits) such that evaluation of a member r of this scheme takes
time polynomial in the representation length. The minimum description length
of a concept c ∈ C in this representation is denoted by size(c).

In Angluin’s exact learning model, the learning algorithm needs to exactly
identify the target concept c ∈ C and has access to an equivalence query
oracle EQ for c. On a query to the EQ oracle, the algorithm submits any
hypothesis h. If h ≡ c, then the response YES is returned. Otherwise, a point
x ∈ X such that h(x) 6= c(x) is returned. Note that such an x may be chosen
in an adversarial way.

Definition 2.1 We say that a concept class C is (efficiently) exactly learnable
from equivalence queries if there exists a polynomial p(·, ·) and an algorithm A,
such that for any target concept c ∈ C, A, given access to an EQ oracle for c,
outputs a hypothesis h evaluatable in time p(n, size(c)) such that h(x) = c(x)
for all x ∈ X. Furthermore, A runs in time p(n, size(c)) and only uses query
functions that can be evaluated in time p(n, size(c)).

In the PAC model, for a concept c and distribution D over X, an example
oracle EX(c,D) is an oracle that, upon request, returns an example 〈x, c(x)〉
where x is chosen randomly with respect to D. For ε ≥ 0 we say that a function
g ε-approximates a function f with respect to distribution D if PrD[f(x) =
g(x)] ≥ 1− ε.

Definition 2.2 For a concept class C, we say that an algorithm A PAC learns
C, if for every ε > 0, δ > 0, c ∈ C, and distribution D over X, A given access
to EX(c,D), outputs, with probability at least 1 − δ, a hypothesis h that ε-
approximates c. The learning algorithm is efficient if its running time and the
time to compute h are polynomial in n, 1/ε, 1/δ, and size(c).

An algorithm is said to weakly learn C if it produces a hypothesis h that
(1

2
− 1

p(n,size(c))
)-approximates c for some polynomial p. We say that an algorithm

learns C over a distribution D if it is only guaranteed to be successful when
the examples are drawn with respect to D.

The random classification noise model introduced by Angluin and Laird for-
malizes the simplest type of white label noise [2] in the random examples. In
this model for any η ≤ 1/2, called the noise rate, the regular example oracle
EX(c,D) is replaced with the noisy oracle EXη(c,D). On each call, EXη(c,D),
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draws x according to D, and returns 〈x, c(x)〉 with probability 1 − η and
〈x,¬c(x)〉 with probability η. When η approaches 1/2 the label of the cor-
rupted example approaches the result of a random coin flip, and therefore the
running times of algorithms in this model are allowed to depend polynomially
on 1

1−2η
.

2.2 Faulty Membership Oracles

In both models we consider three types of membership oracles. A membership
oracle for a function c is the oracle that for every point x ∈ X, returns the
value c(x). This basic oracle is commonly thought of as modeling access to
a teacher or ability to perform experiments. It was introduced to learning by
Valiant [25] and Angluin [1] (for the PAC and the exact models, respectively).
To emphasize the fact that this oracle always returns the correct answer, we
sometimes refer to it as perfect.

Angluin and Slonim introduced a faulty variant of this oracle that addresses
the fact that the teacher might not be able to answer some of the questions
[3] (this is supported by some experiments with MQ learning algorithms [21]).
Specifically, they define an incomplete membership oracle with failure proba-
bility p, denoted by IMQp. For a concept c, whenever IMQp(c) is queried on
a point x, with probability p, it responds with ⊥ and, with probability 1− p,
it responds with c(x). The response ⊥ corresponds to “I don’t know”. If the
oracle is asked on the same point again, it gives the same response (in other
words, the answers of the oracle persist). Note that it is possible (if unlikely)
that the oracle will answer ⊥ to any question asked of it. Therefore we only
require a learning algorithm to succeed with probability 1 − δ over the coin
flips of IMQp for some negligible δ, where we define a function ν : N→ R to
be negligible if for every polynomial p(n) there exists a constant Np such that
ν(n) ≤ 1

p(n)
for n > Np. The running time of an efficient learning algorithm

with access to IMQp is allowed to depend polynomially on 1
1−p

.

Another variant of faulty membership oracles we address is the noisy mem-
bership oracle. This oracle was introduced by Goldman et al. in the context of
exact identification [14]. A noisy membership oracle with noise rate η, denoted
by NMQη, is the membership oracle that flips its answer with probability η.
That is, for a concept c, when NMQη(c) is queried on a point x, it returns
¬c(x) with probability η and c(x) with probability 1 − η. As in the case of
the incomplete membership oracle, the answers persist and therefore we only
require a learning algorithm to succeed with probability 1 − δ over the coin
flips of NMQη for some negligible δ. As in the case of random classification
noise, the running time of an efficient learning algorithm with access to NMQη

is allowed to depend polynomially on 1
1−2η

.
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3 Separation of Incomplete from Noisy MQ Models

We will now show that learning with noisy membership queries is strictly
weaker than learning with incomplete membership queries. First, note that
if a concept class is learnable with noisy membership queries, then it can be
learned with incomplete membership queries. This follows from the fact that
NMQη(c) can be simulated using IMQ2η(c) by returning the outcome of a fair
coin whenever IMQ2η(c) returns “I don’t know” and c(x) otherwise (and giving
the same label if the same query is made). Note that in this simulation poly-
nomial dependence of the running time of the learning algorithm with access
to NMQη on 1/(1− 2η) ensures that the transformation preserves efficiency.

Our separation results are based on an additional cryptographic assumption.
Specifically, we will assume that parities are not PAC learnable with respect
to the uniform distribution in the presence of random classification noise. We
start by providing several relevant definitions and key facts about this problem.

A parity function χa(x) for a vector a ∈ {0, 1}n is defined as χa(x) = a · x =∑
i aixi (mod 2). We refer to the vector associated with a parity function as

its index. We denote the concept class of parity functions {χa | a ∈ {0, 1}n}
by PAR.

Definition 3.1 The noisy parity problem for noise rate η is the problem of
finding the vector a ∈ {0, 1}n given access to EXη(χa,U), where U is the
uniform distribution over {0, 1}n.

It is well-known that learning a parity with respect to U in the PAC sense
(that is up to accuracy ε) is equivalent to finding its index (cf. [12]). Another
simple observation made by Blum et al. [6] is that the noisy parity problem is
randomly self-reducible. That is,

Lemma 3.2 ([6]) Assume that there exists an efficient algorithm that can
solve the noisy parity problem for noise rate η when the target parity function
belongs to a subset S of the parity functions on {0, 1}n, where |S|/2n ≥ 1

p(n)

for some polynomial p. Then there exists an efficient (randomized) algorithm
that can solve the noisy parity problem for noise rate η.

Blum et al. also prove that if parities are not learnable efficiently then there
exist pseudorandom generators [6]. A pseudorandom generator G is a family of
functions Gn : {0, 1}n → {0, 1}g(n) such that for all probabilistic polynomial-
time Turing machines T ,

∣∣∣∣∣ Pr
x∈{0,1}g(n)

[T (x) = 1]− Pr
x∈{0,1}n

[T (Gn(x)) = 1]

∣∣∣∣∣ ≤ ν(n),
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where g(n) : N → N is a function such that g(n) > n for all n and ν is a
negligible function. Blum et al. prove the following result.

Lemma 3.3 ([6]) Assume that there exists η such that the noisy parity prob-
lem is intractable for noise rate η and 1

1−H(η)
≤ p(n) for some polynomial

p and binary entropy function H. Then there exist pseudorandom generators
(with g(n) = n + 1).

In particular, by the result of Goldreich, Goldwasser, and Micali, intractability
of the noisy parity problem implies existence of pseudorandom function (PRF)
families [16] that will be a key part of our construction.

Definition 3.4 A function family Gk,n = {σz}z∈{0,1}k (where the key length k
is taken to be the security parameter and each σz is an efficiently evaluatable
function from {0, 1}n to {0, 1}n) is a pseudorandom function family if any
adversary M (whose resources are bounded by a polynomial in n and k) can
distinguish between a function σz (where z ∈ {0, 1}k is chosen randomly and
kept secret) and a totally random function only with negligible probability. That
is, for every probabilistic polynomial time M with oracle access to a function
from {0, 1}n to {0, 1}n and a negligible function ν(k),

|Pr[MGk,n(1n) = 1]−Pr[MHn(1n) = 1]| ≤ ν(k),

where Gk,n is the random variable produced by choosing σz ∈ Gk,n for a random
and uniform z ∈ {0, 1}k and Hn is the random variable produced by choosing
randomly and uniformly a function from {0, 1}n to {0, 1}n. The probability is
taken over the random choice from Gk,n (or Hk,n) and the coin flips of M .

We first note that the condition 1
1−H(η)

≤ p(n) for some polynomial p can

be replaced by a more standard condition 1
1−2η

≤ p′(n) for some polynomial

p′(n).

Lemma 3.5 If 1
1−2η

≤ p(n) then 1
1−H(η)

≤ p(n)2 + c for some constant c.

Proof: Clearly the condition holds for any constant η < 1/4. Now let α =
1/2− η. By definition, H(η) = −η log η − (1− η) log (1− η). Therefore,

1−H(η) = 1 +
(

1

2
− α

)
log

(
1

2
− α

)
+

(
1

2
+ α

)
log

(
1

2
+ α

)

=
(

1

2
− α

)
log (1− 2α) +

(
1

2
+ α

)
log (1 + 2α)

= log e
[(

1

2
− α

)
ln (1− 2α) +

(
1

2
+ α

)
ln (1 + 2α)

]

The Taylor series expansion for ln (1 + x) is
∑∞

i=1(−1)i+1 xi

i
. This implies that

for positive α ≤ 1/4, ln (1 + 2α) ≥ 2α− 2α2 and ln (1− 2α) ≥ −2α− 4α2. By

8



substituting this into the above equation, we obtain:

1−H(η) ≥ log e(α2 + 2α3) .

But if 1
1−2η

= 1
2α
≤ p(n) then

1

1−H(η)
≤ 1

log e(α2 + 2α3)
≤ p(n)2 .

¤

The idea behind our separation is the following. It is easy to see that parities
are learnable from “incomplete random examples”, that is random examples
where the learner does not get the label with some probability p. This is
true since the learner can just ignore incomplete examples and only use the
random examples with labels (which will still be random and uniform). Our
goal is, in a sense, to transform membership queries to the target into random
examples of the parity function with index a. This is done by creating a
function that maps x to a pair (σz(x), χa(σz(x))) where σz is a function in
a pseudorandom function family. Note that this function is not Boolean but
can be converted to a Boolean one via a simple trick. The problem with this
construction is that in order to learn the given function, the learner would also
need to learn σz (which is not possible since σz is a pseudorandom function).
A way to avoid this problem is to have a encode an address in another part
of the domain at which one can find the parameter z (one cannot just have
a = z since then the adversary could potentially use information about χz

to “break” the pseudorandom function). One can use redundant encoding (or
any other encoding that tolerates erasures) to make sure that the incomplete
MQ will suffice to read σz(x) and z (at location a). Finally we embed this
information into an exponentially small subset of the domain and make the
remainder pseudorandom (using the same σz) so as to make even weak PAC
learning impossible without knowing z. In the following theorem we describe
the construction that formalizes the above argument and implies Theorems
1.1 and 1.2.

Theorem 3.6 If the noisy parity problem for noise rate η is intractable and
1

1−2η
is upper-bounded by some polynomial in n, then there exists a concept

class C that is exactly learnable with incomplete membership queries alone,
but not weakly PAC learnable with noisy membership queries of error rate η.

Proof: We define the concept class C = {Cn}n∈N, where Cn is defined over
{0, 1}2n as follows. Let Gn,n be a pseudorandom family of functions whose
existence is implied by Lemma 3.3. Let a ∈ {0, 1}n and χa be the corresponding
parity on n variables. For each a and z ∈ {0, 1}n, define a function cz,a :
{0, 1}2n → {0, 1} as follows. We split the input x into 5 parts: b, w, y, j, and
k, where b ∈ {0, 1}, w ∈ {0, 1}n

2 , y ∈ {0, 1}n, k ∈ {0, 1}` for ` = dlog (n + 1)e
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and j ∈ {0, 1}n
2
−1−`. For convenience, we view j and k as integers given in

binary representation.

If w 6= 0
n
2 , cz,a equals the first bit of σz(y) that we denote by σz(y)1. Otherwise,

for b = 0 cz,a encodes a parity on pseudorandom points and for b = 1, cz,a

encodes z, the secret key to a pseudorandom function family in a “hidden”
location that requires knowing a to uncover. Parameter k indexes the bit of
σz(y) or z that is being encoded and parameter j indexes a copy of each of
these bits. Exponentially many copies are used to make sure that incomplete
membership queries can still be used to read these bits with negligible failure
rate. Formally,

cz,a(b, w, y, j, k) =





σz(y)1 if w 6= 0
n
2

χa(σz(y)) if w = 0
n
2 and b = j = k = 0

k-th bit of σz(y) if w = 0
n
2 , b = 0 and 1 ≤ k ≤ n

k-th bit of z if w = 0
n
2 , b = 1, y = a, and 1 ≤ k ≤ n

0 otherwise

(1)
We define Cn = {cz,a | z, a ∈ {0, 1}n}.

Lemma 3.7 The concept class C is exactly learnable from incomplete mem-
bership queries.

Proof: Let 1
τ

= 1−p be the success rate of the given IMQp oracle. The learning
algorithm A chooses y1 ∈ {0, 1}n randomly and uniformly and attempts to
get χa(σz(y1)) by querying IMQp(cz,a) on point (0, 0

n
2 , y1, 0, 0). Then for every

1 ≤ k ≤ n, it attempts to find the kth bit of σz(y1) by querying IMQp(cz,a)
on point (0, 0

n
2 , y1, j, k) for j = 0, 1, . . . , s(n), where s(n) = 4nτ . Thus the

probability that the kth bit is not obtained is (1 − 1
τ
)s(n) ≤ exp (−s(n)/τ) =

exp(−4n). This process is repeated s(n) times to obtain σz(y1), . . . , σz(ys(n))
and, the corresponding labels. By the union bound, the probability that any
bit of any σz(yi) is not obtained is at most s(n) exp(−4n).

Let X =
∑s(n)

i=1 Xi, where Xi is the event that χa(σz(yi)) is successfully ob-
tained. For distinct yi’s these events are independent and E[X] = s(n)/τ = 4n.
Therefore, by the multiplicative Chernoff bound [11],

Pr[X < 2n] = Pr[X < (1− 1

2
)E[X]] ≤ exp(−s(n)/(8τ)) ≤ exp(−n/2),

a negligible function. Note that the probability that not all yi’s are distinct is
upper-bounded by s2(n)/2n = O(τ 2 · n2 · 2−n). Therefore if τ = O(2n/3) then
this probability is negligible. In this case s(n) < 2n/2−`−1 and therefore there
are enough distinct copies of each bit of σz(yi) for the above recovery scheme
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to work and the failure probability s(n) exp(−4n) is a negligible function. If
τ = Ω(2n/3) then the brute-force algorithm that learns the unknown concept
point-by-point (which is possible in both PAC and exact models) would have
running time polynomial in τ = 1

1−p
.

The algorithm A next checks whether the vectors σz(yi) for which Xi = 1 span
{0, 1}n (viewed as a vector space over GF(2)), and if so, computes the index a
of the parity via Gaussian elimination. If this succeeds, the algorithm queries
IMQp(cz,a) on points of the form (1, 0

n
2 , a, j, k) for all j ≤ n and k ≤ s(n) to

obtain the value of z with negligible failure probability in the same way as
each σz(yi) is obtained. If any of the steps of the algorithm fail, the algorithm
outputs ⊥.

We claim that A learns C with negligible failure rate. First we claim that 2n
uniformly random elements v1, . . . , v2n of {0, 1}n fail to span the space with
negligible probability. If these vectors fail to span the space, they lie in some
subspace of dimension n− 1. There are 2n − 1 subspaces of dimension n− 1.
The probability that all 2n vectors lie in any particular subspace is 2−2n. By
the union bound, the probability that v1, . . . , v2n fail to span {0, 1}n is upper-
bounded by 2−2n · (2n − 1) ≤ 2−n, a negligible function. This implies that the
vectors σz(yi) for which Xi = 1 fail to span {0, 1}n with probability at most
2−n + ν(n) for some negligible ν(n). This is true since otherwise, values of σz

on randomly chosen points y1, . . . , ys(n) could be efficiently distinguished from
truly random and uniform points with non-negligible probability. Therefore
A fails to compute a with negligible probability. The probability that A fails
to compute z after computing a was shown above to be negligible as well and
hence the total failure probability of A on every cz,a is negligible. It is also
easy to verify that A runs in time polynomial in τ and n. ¤ (Lemma 3.7)

Lemma 3.8 Under the assumption of Theorem 3.6, the concept class C is not
weakly PAC learnable with noisy membership queries of error rate η.

Proof: We claim that if C can be efficiently learned from random examples
and NMQη by an algorithm A, then we can either:

• Learn parities with noise η.
• Distinguish a function randomly selected from our PRF family from a truly

random function.

The latter would also imply learning of parities with noise by Lemma 3.3 of
Blum et al. [6].

Assume that there exists an algorithm A that for every c ∈ C, given access
to random and uniform examples of c and queries to NMQη(c) produces a
hypothesis h that (1

2
− 1

q(n)
)-approximates c for some polynomial q(n). Using

A we will build a distinguishing test T with oracle access to a function σ :
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{0, 1}n → {0, 1}n.

The algorithm T first chooses a random a ∈ {0, 1}n and then simulates the
algorithm A with δ = 1

4
. The algorithm T handles queries from A as follows:

• Random examples: T chooses a random point x = (b, w, y, j, k) in the
instance space. If w 6= 0

n
2 then T returns example 〈x, σ(y)1〉. Otherwise, T

stops and outputs 0.
• Membership queries: If y = a then T returns 1 and stops. Otherwise, T

computes cz,a(b, w, y, j, k) according to equation (1) while using σ in place
of σz, and uses randomness to simulate random persistent noise.

Let h be the hypothesis that A outputs. T estimates the error of h(b, w, y, j, k)
on σ(y)1 within 1

4q(n)
by using O(nq2(n)) random and uniform points. Chernoff

bounds imply that the estimate will be correct with probability at least 1 −
ν1(n) for some negligible ν1(n) [11]. T returns 1 if the estimate of the error of
h on σ(y)1 is at most 1

2
− 1

2q(n)
and 0 otherwise.

We now claim that T returns 1 with probability ≥ 3
4
−ν(n) when it has oracle

access to a function σz randomly chosen from Gn,n, where ν(n) is negligible. If
σ = σz then the oracles provided by the simulation are valid oracles for cz,a(x)
until either a membership query with y = a is made or a random example
with w = 0

n
2 is generated. In the first case T outputs 1. The probability

that for any polynomial number of uniform random examples there exists an
example with w = 0

n
2 is negligible. If neither of these events happens then,

with probability at least 3
4
, A has to output a hypothesis h that (1

2
− 1

q(n)
)-

approximates cz,a. The function cz,a(b, w, y, j, k) differs from σz(y)1 only when
w = 0

n
2 and therefore h (1

2
− 1

q(n)
− 2−

n
2 )-approximates σz(y)1. This implies

that if A is successful and the estimate of the error of h is correct then T will
return 1 and, in particular, Pr[T Gn,n(1n) = 1] ≥ 3

4
− ν(n) for some negligible

ν(n).

Now let Hn be the uniform distribution over functions from {0, 1}n to {0, 1}n,
that is, σ is a truly randomly chosen function. If Pr[THn(1n) = 1] ≤ 1

2
then

T is an efficient distinguisher violating the pseudorandomness property of
the family Gn,n. Therefore we can assume that Pr[THn(1n) = 1] ≥ 1

2
. It

is well-known (and can be easily derived using Chernoff bound [11]) that
for a randomly chosen σ, the probability that there exists a hypothesis of
polynomial size that (1

2
− 1

4q(n)
)-approximates σ(y)1 is negligible. Therefore

the probability that T outputs 1 is upper-bounded by the probability that
during the simulation A asks a membership query with y = a plus some
negligible ν(n) (that also accounts for the probability that the estimate of
the error of h is not within 1

4q(n)
). We now claim that A needs to solve the

noisy parity problem to ask a membership query with y = a and therefore this
cannot happen with significant probability.
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We design a learner M for parities with noise that works as follows. Let
EXη(χa′ ,U) be the oracle given to M . M simulates A in the same way as
THn(1n) does but uses random examples from EXη(χa′ ,U) in place of noisy
examples of a randomly chosen parity function χa. Formally, to produce the
output of a membership query on a point (b, w, y, j, k) for A, M gets a random
example 〈y′, v′〉 from EXη(χa′ ,U). If w = 0

n
2 and b = j = k = 0 then M replies

with v′ otherwise M replies with value v corrupted with random persistent
noise of rate η, where

v =





first bit of y′ if w 6= 0
n
2

k-th bit of y′ if b = 0, w = 0
n
2 and 1 ≤ k ≤ n

0 otherwise

Random examples are handled in the same way (but without the noise). As
before, if a random example with w = 0

n
2 is generated the simulation is ter-

minated. If M gets a membership query or produces an example for y which
has already been queried or generated via a random example then the same
example 〈y′, v′〉 is used as in the first occurrence. Finally, to test if y = a′,
M tests the hypothesis χy on random examples from EXη(χa′ ,U). A standard
application of Chernoff bound implies that a polynomial in n and 1

1−2η
number

of examples is sufficient to ensure that the probability of an outcome of such
a test being incorrect is negligible [11]. If the outcome of the test is positive
then M returns y. It is straightforward to verify that, conditioned on the re-
sults of all these tests being correct, M with access to EXη(χa′ ,U) produces
exactly the same simulation of A as THn conditioned on a = a′. In particular,
the probability that M finds a′ is equal (up to a negligible function) to the
probability that THn conditioned on a = a′ outputs 1.

Now let THn [a′] denote the execution of THn conditioned on a = a′ and let S
be the set of all vectors a′ for which the success probability of THn [a′] is at
least 1/4, that is

S =
{
a′

∣∣∣∣ Pr[THn [a′](1n) = 1] ≥ 1

4

}
.

By our assumption,

1

2
≤ Pr[THn(1n) = 1] = Ea′∈{0,1}n

[
Pr[THn [a′](1n) = 1]

]

≤ Pr[a′ ∈ S] +
1

4
(1−Pr[a′ ∈ S]) =

1

4
+

3

4
Pr[a′ ∈ S] .

This means that Pr[a′ ∈ S] ≥ 1
3
. By combining the arguments above we obtain

that for every a′ ∈ S, M successfully finds a′ given access to EXη(χa′ ,U) with
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probability at least 1/4−ν2(n) for some negligible ν2(n). This probability can
be boosted to 1−δ using the standard confidence boosting procedure (cf. [19]).
Further, we can use Lemma 3.2 to obtain algorithm M ′ that efficiently learns
all parities in the presence of noise, violating the assumption of Theorem 3.6.

¤ (Lemma 3.8)

By combining Lemmas 3.7 and 3.8 we obtain the desired result.

¤ (Theorem 3.6)

Theorem 3.6 is stronger than Theorem 1.2. In addition, the standard reduction
of exact learning to PAC learning implies that the concept class C is not
exactly learnable from equivalence queries and noisy membership queries of
rate η. Therefore Theorem 3.6 also implies Theorem 1.1.

4 Separation of Incomplete from Perfect MQ Models

In this section, we show that the incomplete membership oracle is strictly
weaker than the perfect one, in the settings of both PAC and exact learning.
An analogue of this result for the special case of proper exact learning was
given by Simon [24].

We begin by describing the main idea. Given a concept class C that is hard
to PAC learn, one can construct a new class F in which every concept is
almost identical to a concept c ∈ C, but includes the description of c hidden
in an exponentially small subset of the domain. We encode each bit of the
description of c as a XOR of a large number of bits, each of which is allowed
to range arbitrarily given this single linear constraint. If just one bit is missed,
the entirety of this information becomes useless. With high probability, an
incomplete oracle will miss at least one bit of the XOR and, therefore, learning
with incomplete MQs is, with high probability, equivalent to learning C, which
was assumed hard.

Theorem 4.1 Suppose a concept class C cannot be efficiently PAC learned
over the uniform distribution with membership queries. For any polynomial
r(n), there exists a concept class F that is efficiently PAC learnable over
the uniform distribution with membership queries, but is not efficiently PAC
learnable over the uniform distribution with access to IMQp, for p = 1/r(n).

Proof: We define the concept class F = {Fn}n∈N, where Fn is defined over
{0, 1}n+1 as follows. First, we assume (without loss of generality) that all
concepts in Cn have description length exactly s(n) = 2o(n). Concepts of size
2Ω(n) can be learned efficiently in time polynomial in 2n in the trivial way.
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For c ∈ Cn let ci denote the ith bit of the description of c. Let t(n) = n/p =

nr(n). For convenience, we view the domain {0, 1}n+1 as {0, 1}×{0, 1}log s(n)×
{0, 1}log t(n) × {0, 1}n−log(s(n)t(n)) , and refer to a point in the domain by a
quadruple (b, i, j, k). Similarly, we also refer to a point in {0, 1}n+1 as a pair
(b, x) where b ∈ {0, 1} and x ∈ {0, 1}n. For a binary string u ∈ {0, 1}s(n)t(n),
we refer to its bits by ui,j where i ∈ [s(n)] and j ∈ [t(n)]. For a concept c ∈ Cn,
u ∈ {0, 1}s(n)t(n) and a point y = (b, x) = (b, i, j, k) ∈ {0, 1}n+1 we define

fc,u(y) =





c(x) b = 0

0 b = 1, k 6= 0n−log(s(n)t(n))

ui,j b = 1, k = 0n−log(s(n)t(n))

(2)

Concept class Fn consists of all fc,u such that c ∈ Cn and u ∈ {0, 1}s(n)t(n)

satisfies the constraint

ci =
t(n)⊕

j=1

ui,j, (3)

for every i ∈ [s(n)]. Any function fc,u ∈ Fn is evaluatable in polynomial time
in its description length (which equals t(n)s(n)).

We will first prove that F can be learned using membership queries alone. De-
fine an algorithmA as follows:A asks membership queries on (1, i, j, 0n−log(s(n)t(n)))
to find the values ui,j for all i ∈ [s(n)] and j ∈ [t(n)]. Then, by computing

ci =
⊕t(n)

j=1 ui,j, the algorithm computes the concept c and thereby finds fc,u.
Thus our algorithm learns F efficiently and exactly from membership queries
alone. In particular, it is a PAC learning algorithm for any distribution over
the domain.

For the second part of the claim, let A′ be any algorithm that efficiently learns
F in the PAC model over the uniform distribution with access to IMQp. We
construct an algorithm A to efficiently learn C in the PAC model over the
uniform distribution with membership queries. Let ε and δ be the parameters
of A and let EX(c,U) and MQ(c) be the example oracle and membership
oracle to which A has access. We can assume that δ = 2−o(n) and ε = 2−o(n),
since if say δ = 2−Ω(n), then the trivial learning algorithm for C is polynomial
in 1

δ
. The algorithm A works as follows:

(1) Choose u′ ∈ {0, 1}s(n)t(n) randomly and uniformly.
(2) Run A′ with parameters ε

2
and δ

2
by simulating oracles EX(fc,u′ ,U) and

MQ(fc,u′) as detailed below.
(3) Return h(x) ≡ h′(0, x), where h′ is the output of A′.

Whenever A′ requests an example from EX(fc,u′ ,U), A flips a coin. If the
coin comes up heads, it requests an example 〈x, v〉 from EX(c,U) and returns
〈(0, x), v〉 to A′. If the coin comes up tails, A returns 〈x, fc,u′(1, x)〉, as defined
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in equation (2). On a membership query (b, x), A returns ⊥ with probability p
(persistently) and value fc,u′(b, x) with probability 1−p. To compute fc,u′(b, x)
when b = 0, A uses a membership query to MQ(c) on x.

Let δ∗ = δ1 + δ2, where δ1 and δ2 are the probabilities, respectively, that the
following events occur.

(1) There exists i such that for all j ∈ [t(n)], A′ asked for a membership
query on (1, i, j, 0n−log(s(n)t(n))) and obtained u′i,j.

(2) A′ received the value at (1, i, j, k) for k = 0n−log(s(n)t(n)) as a random
example.

If neither of these events occur, there exists u that agrees with all the answers
that A has provided using u′ and satisfies the constraints in equation (3). Thus
with probability ≥ 1− δ∗, the answers of A are consistent with the simulation
of A′ using oracles EX(fc,u,U) and MQ(fc,u). Therefore, with probability at
least 1 − δ∗ − δ

2
, A′ returns h′ that ε

2
-approximates fc,u with respect to the

uniform distribution over {0, 1}n. The function fc,u equals c when b = 0 and
therefore the hypothesis h returned by A ε-approximates c with respect to the
uniform distribution over {0, 1}n.

We will now show that for sufficiently large n, δ∗ ≤ δ
2

and hence the success
probability of A is at least 1− δ. Each u′i,j is returned with probability 1− p
and therefore the probability that event 1 occurs for a fixed i ∈ [s(n)] is
(1 − p)t(n) ≤ exp(−p · t(n)) = exp(−n). By the union bound, the probability
that event 1 occurs is at most s(n) exp(−n) ≤ δ/4.

To bound δ2, observe that the probability that for a random point (b, i, j, k),
k = 0n−log(s(n)t(n)) is s(n)t(n)/2n. Therefore δ2 ≤ q(n)s(n)t(n)/2n. By our
assumption, s(n), 1/ε and 1/δ are 2o(n). The running time of A′ is polynomial
in n, s(n)t(n) = nr(n)s(n), 1/ε and 1/δ and therefore q(n) is 2o(n). This implies
that δ2 ≤ 2−n/2 ≤ δ/4 for sufficiently large n. Finally note that the running
time of A is polynomial in n, s(n)t(n) = nr(n)s(n), 1/ε and 1/δ and hence A
is an efficient PAC learning algorithm for C. This contradicts our assumption
and therefore implies that F is not efficiently PAC learnable over the uniform
distribution with access to IMQp. ¤

Corollary 4.2 Assume that there exists a concept class C that is not exactly
learnable from equivalence and membership queries. Then, for any polynomial
r(n), there exists a concept class F that is exactly learnable from equivalence
and membership queries, but is not exactly learnable from equivalence queries
and incomplete membership queries with failure rate p = 1/r(n).

Proof: We construct the class F exactly as in the proof of Theorem 4.1. The
learning algorithm for F that we described is exact and uses only member-
ship queries. Therefore we get that F is learnable in the exact model with
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membership queries.

We also use the learning algorithm A′ for F to construct A that learns C
as before, but replace handling of random examples with analogous handing
of equivalence queries. If A′ makes an equivalence query g′, then A submits
the equivalence query g(x) ≡ g′(0, x) to its equivalence oracle. Given a coun-
terexample 〈x, v〉, A returns 〈(0, x), v〉 as a counterexample to A′. Event 2
does not occur and therefore we only need to ensure that event 1 occurs with
some negligible probability. As we have showed, δ1 ≤ s(n) exp(−n) and there-
fore, by analogous analysis, A succeeds with probability at least 1− ν(n) for
some negligible ν(n). This contradicts our assumption and implies the desired
result. ¤

These separation results are optimal in the following sense. Every concept
class that is efficiently learnable in the exact model with perfect MQs is also
efficiently exactly learnable with EQ and IMQ1/r(n) for sufficiently large poly-
nomial r(n). This is true since for a sufficiently low omission rate, with high
probability, the learner will not encounter any omissions in the answers to a
polynomial number of membership queries.

Corollary 4.3 If one-way functions exist, then PAC learning with incom-
plete membership queries is strictly harder than PAC learning with perfect
membership queries. Similarly, exact learning with equivalence and incomplete
membership queries is strictly harder than exact learning with equivalence and
perfect membership queries.

Proof: Valiant observed that if one-way functions exist, then polynomial size
circuits are hard to learn in the PAC model with membership queries [25].
Since any concept class learnable in the exact model may also be learned
in the PAC model with membership queries, polynomial size circuits are also
hard to learn in the exact model under the assumption that one-way functions
exist. This gives us the desired results by Theorem 4.1 and Corollary 4.2. ¤

5 Concluding Remarks

In this paper, we gave two separation results for exact learning with faulty
membership queries. Perhaps the most interesting aspect of the second separa-
tion result is a surprising connection to learning of parities in the PAC model
with noise. It appears to be the first result that is based on the intractability
of the noisy parity problem. An interesting related question is whether this
assumption can be replaced by a more general complexity theoretic assump-
tion.
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