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Abstract

We consider the long-open problem of attribute-efficient learning of halfspaces. In this problem the
learner is given random examples labeled by an unknown halfspace function f on R™. Further f is
r-sparse, that is it depends on at most  out of n variables. An attribute-efficient learning algorithm
is an algorithm that can output a hypothesis close to f using a polynomial in 7 and log 7 number
of examples (Blum, 1992). Despite a number of attempts and some partial progress, there are no
efficient algorithms or hardness results for the problem. We propose a potentially easier question:
what is the query complexity of this learning problem in the statistical query (SQ) model of Kearns
(1998). We show that, as in the case of general PAC learning, the query complexity of attribute-
efficient SQ learning of any concept class can be characterized by a combinatorial parameter of the
concept class. The proposed question is then equivalent to estimating the value of this parameter
for the concept class of halfspaces. A potentially simpler problem is to estimate this parameter for
the concept class of decision lists, a subclass of halfspaces.

Background

Learning of halfspaces in the presence of a large number of irrelevant attributes is one of the fun-
damental problems in machine learning theory and practice. In this problem we are given examples
over R" labeled by a halfspace sign(w - = > 6). Further the vector w is r-sparse, that is, has at
most 7 non-zero coordinates. We are interested in the common case when r is much smaller than
n, for example » = logn. It is well known that the VC dimension of all r-sparse halfspaces is
O(rlog n).Therefore r-sparse halfspaces can be PAC learned using O(r log n/€) examples to accu-
racy 1 — e, although the best known algorithm requires n°(") time steps. Given O(n/¢) examples
this learning task becomes easy since general halfspaces are learnable efficiently with that many ex-
amples in polynomial time. The question of whether efficient learning if possible with fewer exam-
ples is one of the long standing open problems in learning theory (Blum, 1992; Blum and Langley,
1997). This problem is also interesting in the general context of problems exhibiting an intriguing
gap between the number of samples sufficient to solve the problem information-theoretically and the
number of samples sufficient to solve the problem efficiently. Such problems have been studied in
the past and have attracted renewed attention more recently Decatur et al. (1999); Servedio (2000);
Feldman (2007); Shalev-Shwartz et al. (2012); Berthet and Rigollet (2013); Daniely et al. (2013).
Learning in the presence of a large number of irrelevant attributes was explicitly formalized
by Avrim Blum as attribute-efficient learning (1992). A PAC learning algorithm' for a class of
concepts C is said to be attribute-efficient if the number of examples it uses is polynomial in the VC
dimension of C. For most classes studied this is equivalent to being polynomial in r log n, where

1. This definition was originally stated in the context of online mistake-bound model (Littlestone, 1987).
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r is the number of variables that can influence the value of the target concept f € C. In further
discussion, for simplicity we restrict our attention to learning over {0, 1}" domain for which most
of prior work is stated.

Littlestone’s (1987) seminal Winnow algorithm leads directly to an algorithm that learns r-
sparse halfspaces using O(log n/(evZ,)) examples, where vy is the £ 1 margin of the target half-
space on the input distribution (1/~yy is also equal to the smallest total weight of an integer weight
representation of f). In particular, this leads to attribute-efficient learning whenever the margin is at
least 1/poly(r). This is the case, for example, for disjunctions and majorities of 7 variables (disjunc-
tions can also be learned attribute-efficiently via an algorithm of Haussler (1988)). Unfortunately,
in general, vy of an r-sparse halfspaces over {0, 1}" can be as low as r~(") (Hastad, 1994) and
thus for » > log n this approach does not improve on the trivial O(n/¢) sample complexity bound.

Partial progress has been made on an important special case of decision lists which have margin
as low as 274", By representing decision lists as polynomial threshold functions and using the
Winnow algorithm, Klivans and Servedio (2006) gave an algorithm that uses 20(r/?%) log n/e exam-

ples and runs in time nO'’?) /€. Their approach also gives other points in the trade-off between the

running time and the number of examples and was strengthened in a recent work of Servedio et al.
(2012). Nearly tight lower bounds are known for this approach and its generalizations (see App. A).
For the case when the distribution over the inputs is uniform (or sufficiently close to it) Long and
Servedio (2006) show that decision lists are learnable attribute-efficiently in polynomial time and
halfspaces are learnable attribute-efficiently albeit with worse 20(1/¢%) dependence on the accuracy
parameter.

Attribute-efficient Statistical Query Learning

We consider learning of sparse halfspaces in the statistical query (SQ) model of Kearns (1998). In
this model the learning algorithm has access to statistical queries instead of random examples. An
SQ oracle for input distribution D and target function f provides answers to statistical queries. A
query is given by a bounded function of an example ¢ : {0,1}" x {—=1,1} — [—1,1] and the
oracle responds with some value v that satisfies |v — Eq~p[¢(z, f(2))]| < 7. Here 7 is referred the
tolerance of the query. A valid answer to a query of tolerance 7 can be found with probability 1 —
using O(log(1/8)/72) random examples and, naturally, £2(1/72) examples are in general necessary
to obtain such an estimate with probability > 1/2. Therefore tolerance of the query corresponds to
the number of examples available to the learning algorithm (in (Feldman et al., 2013) a variant of the
SQ oracle is described that makes this correspondence explicit and tight). Given the correspondence
above, a natural way to define attribute-efficient SQ learning of C is as learning in which tolerance
of SQs used by the algorithm is lower bounded by the inverse of a polynomial in the VC dimension
of C.

Essentially all known upper bounds for PAC learning also hold for the SQ model up to, possibly,
polynomial factors (with learning of parity functions via Gaussian elimination being the only known
exception). The same holds for the known attribute-efficient upper bounds that we are aware of
(without the exception since there is no attribute-efficient version of Gaussian elimination). In the
most important case of the Winnow algorithm (and its use in expanded feature spaces) this can be
easily derived either by analyzing the Winnow algorithm directly or by using the boosting-based
approach for learning r-sparse halfspaces of Jackson and Craven (1996) instead (it has the same
dependence on yyy).
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SQ complexity

An important property of the SQ model is that the query complexity of SQ learning C over a dis-
tribution D can be characterized via a geometric property of C and D. For the case of weak PAC
learning this was first shown by Blum et al. (1994) and has since been extended to many other set-
tings (e.g. (Feldman, 2012)). A lower bound on the query complexity of the SQ algorithm gives a
lower bound on its running time. Remarkably, for all known “natural” concept classes their query
complexity is the same (up to polynomial factors) as the running time of the SQ learning algorithm
(see (Feldman and Kanade, 2012) for a more detailed discussion). Therefore both upper and lower
bounds on the SQ complexity can shed light on computational complexity of the learning problem.

To characterize the complexity of attribute-efficient SQ learning we define the following gener-
alization of SQ-DIM in (Blum et al., 1994).

Definition 1 For v > 0, a class of {—1, 1}-valued functions C and a distribution D over some
domain X we say that SQ-DIM(C,D,~) = d if d is the largest such that there exist d func-
tions fi,..., fa € C such that for every 1 < i # j < d, |Ez~plfi(z)fj(x)]| < v. We define
SQO-DIM(C,~y) = maxp{SQ-DIM(C,D,~)}.

We prove (in App. B) the following generalization of results in (Blum et al., 1994).

Theorem 2 If SOQ-DIM(C,D,~y) = d then any SQ algorithm that learns C over D using queries of
tolerance T > \/'m and outputs a hypothesis with accuracy > 1/2+ 1 /2 needs at least dr? /2 — 1
statistical queries. Further, C can be SQ learned over D to accuracy 1/2 + /4 using at most d
queries of tolerance v /8.

If SQ-DIM(C, v) = d and the learning algorithm has access to unlabeled samples in addition to SQs
then the weak learner above can be converted to a distribution-independent learner with accuracy
1 — € via standard results in hypothesis boosting. When used with a smooth boosting algorithm
such as (Servedio, 2003; Feldman, 2010) this approach uses O(d log(1/¢)/~?) queries of tolerance
Q(~e) and poly(d, 1/¢,1/7) unlabeled examples. The unlabeled examples are used to obtain an
empirical approximation D; to each distribution D; produced by the boosting algorithm. This is
needed to find a maximal set or nearly uncorrelated f;’s for D; (formal details are easy to fill in and
are omitted in this note).

Definition 1 and Theorem 2 can be extended to learning with accuracy 1 — ¢ using the results
in (Feldman, 2012). However, for the problem of learning r-sparse halfspaces even weak learning
appears to be hard and therefore understanding this simpler dimension is a natural starting point.
Given the definitions and the characterization we can pose our questions formally:

Problem 3 Let H, denote the class of r-sparse halfspaces over {0,1}"™. Does there exist v =
(rlogn)~°W such that SQ-DIM(H,.,y) = n°1)? We also ask the same question for the class of
length-r decision lists.

Weaker non-trivial results about the trade-off between ~ and SQ-DIM(?H,,y) are also of interest.
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Appendix A. Lower Bounds for Generalized Winnow

Essentially the only lower bounds known for learning sparse halfspaces are for the technique of
Klivans and Servedio (2006) and its generalizations. The essence of this technique is using the
Winnow algorithm over a more general feature space and it relies on representation of functions
in C as low total integer weight halfspaces over the new feature space (recall that the total integer
weight is the inverse of ). In (Klivans and Servedio, 2006; Servedio et al., 2012) this feature
space consists of k-disjunctions for some k£ < r. They give lower bounds for the approach when
it is used with this feature space that essentially match their upper bounds. It was observed by
Sherstov (2008) that communication complexity lower bounds of Goldmann et al. (1992) imply
that representation of all r-dimensional halfspaces over {0, 1}" requires either 22r) features or
22r) integer weight. Similarly, results of Buhrman et al. (2007) imply analogous lower bounds
(with r1/3 in place of r) for decision lists (see (Feldman, 2008; Servedio et al., 2012) for more
details). This means that this approach to learning r-sparse halfspaces requires either n*(") features
(and hence time) or 282(r) examples.
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Appendix B. Proof of Theorem 2

Proof Let A be a statistical algorithm that uses g queries of tolerance 7 > \/,W to learn C over
D. Using the decomposition of a query function into a correlation and target-independent parts
(e.g. Feldman, 2008) we can assume that all queries of A are of the form E,p[f(z)g(x)] where
g : X — [—1,1] is a bounded function. We simulate .A by answering any query g : X — [—1, 1] of
A with value 0. Let g1, g2, . . . , g4 be the queries asked by A in this simulation and let g,41 be the
output hypothesis of A.

For real-valued functions g, h over X we use the following inner product (g, h) p = E.~p|g(x)h(z)]
and let ||g||%, = (g, g) be the associated norm. By the definition of SQ-DIM, there exists a set of d
functions { f1,..., fa} C C such that for every i # j < d, |(fi, fj)p| < 7. In the rest of the proof
for conciseness we drop the subscript D from inner products and norms.

To lower bound ¢, we use a generalization of an elegant argument of Szorényi (2009). For every
k € [q + 1] let Ay C [d] be the set of indices 7 such that |(f;, gx)| > 7. To prove the desired bound
we prove that following two claims:

L. Zke[q—l—l] [Ag| = d;

2. forevery k € [q+ 1], |Ax| < 2/7%

Combining these two immediately implies the desired bound ¢ > dr2/2 — 1.

To prove the first claim we assume, for the sake of contradiction, that there exists i € [d] \
(Urelg+1]Ak)- Then for every k € [q + 1], [(fi, gx)| < 7. This implies that the replies of our sim-
ulation are within 7 of (f;, gx). By the definition of A, this implies that Prplgq+1(z) = fi(z)] >
1/2+4 7/2or (fi, gq+1) > 7. This contradicts the condition that i ¢ Ag;.

To prove the second claim we consider upper and lower bounds on the following quantity:

<gk, > fi-sign{gs, fi>> :

1€AL

By Cauchy-Schwartz we have that

) 2
<gk7 > fie Sign<9k7fz‘>> < lgel®- || D2 fi - sign{gr, £i)
1€EAL i€A
< | D> Wl
T
< ARy (AR = Ak

We also have that
<9k7 > fi-sign{gr, fi>> = gk, fi)] = |Axlr.
1€AL €A
By combining these two bounds we obtain that

| Al + 7 - (JA)? — |Ak]) > [Ag 7>
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Using the condition 7 > /7/2 we obtain that | Ay | > |Ax|272/2 and therefore |Ax| < 2/72.

We remark that for simplicity we assumed that A is deterministic. The argument can be easily
generalized to randomized algorithms by considering the success probability on a randomly and
uniformly chosen f; and applying Yao’s minimax principle (1977). More details can be found in
the analogous argument in (Feldman et al., 2013).

For the other direction of this theorem the algorithm simply finds which of f;’s has the largest
correlation with the target function using SQs of tolerance /8. Denote it by h. It then outputs A (if
the correlation is positive) or —h (if the correlation is negative) as a hypothesis. It is easy to see that
this gives the desired weak learning algorithm. |
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