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Abstract

Valiant has recently introduced a framework for analyzing the capabilities and the limitations
of the evolutionary process of random change guided by selection [Val06]. In his framework the
process of acquiring a complex functionality is viewed as a substantially restricted form of PAC
learning of an unknown function from a certain set of functions [Val84]. Valiant showed that
classes of functions evolvable in his model are also learnable in the statistical query (SQ) model
of Kearns [Kea98] and asked whether the converse is true.

We show that evolvability is equivalent to learnability by a restricted form of statistical
queries. Based on this equivalence we prove that for any fixed distribution D over the instance
space, every class of functions learnable by SQs over D is evolvable over D. Previously, only the
evolvability of monotone conjunctions of Boolean variables over the uniform distribution was
known [Val07]. On the other hand, we prove that the answer to Valiant’s question is negative
when distribution-independent evolvability is considered. To demonstrate this, we develop a
technique for proving lower bounds on evolvability and use it to show that decision lists and
linear threshold functions are not evolvable in a distribution-independent way. This is in contrast
to distribution-independent learnability of decision lists and linear threshold functions in the
statistical query model.

1 Introduction

We study the model of evolvability recently introduced by Valiant [Val06]. Valiant’s model
addresses one of the most important and least understood aspects of the theory of evolution:
how complex and adaptable mechanisms result from relatively short sequences of random mu-
tations guided (primarily) by natural selection. The fundamental insight of his theory is that
evolution is a form of learning in which the feedback from the environment is provided solely by
natural selection. Valiant therefore suggests that the appropriate framework for understanding
the power of evolution as a mechanism of learning is that of computational learning theory
[Val84]. Accordingly, in his model, evolvability of certain useful functionality is cast as a prob-
lem of learning the desired functionality through a process in which, at each step, the most
“fit” candidate function is chosen from a small pool of candidates. Limits on the number of
steps, the size of the pool of candidates, and the amount of computation performed at each step
are imposed to make this process naturally plausible. A certain class of functions is considered
evolvable if there exists a single mechanism that guarantees convergence to the desired function
for any function in this class. We refer to such mechanisms as evolutionary algorithms. Here the
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requirements closely follow those of the celebrated PAC learning model introduced by Valiant
in 1984 [Val84]. In fact, every evolutionary algorithm (here and below by evolution we mean
evolution in Valiant’s model) can be simulated by an algorithm that is given random examples
of the desired function. As in PAC learning, restriction on evolutionary algorithms make ran-
dom search through all the possible functions of the given type impossible and thereby force
evolutionary algorithms to exploit the underlying structure of the desired function.

As a more concrete example, one can take the desired function to be the function that
recognizes predators of an organism given sensory information about the surroundings. The
ability of the organism to recognize predators can be thought of as determined by the genome
of the organism or by expression of a fixed set of proteins. Then for every genome, mutations
would provide the candidate functions, of which the most fit will be the most likely to occur
in the future generations. The reader is referred to Valiant’s original publication for a detailed
discussion of his model.

While the constrained way in which evolutionary algorithms have to find the desired function
makes such algorithms more biologically plausible, it also makes designing such algorithms
substantially more involved than designing PAC learning algorithms. In fact, the only concept
class that was shown to be evolvable prior to this work is the class of monotone conjunctions
(or disjunctions) of Boolean variables and only when the distribution on the domain is uniform1

[Val07]. While the resulting algorithm is relatively simple it required significantly more delicate
analysis than PAC learning algorithms for conjunctions. Another related result was recently
given by Michael who proved that decision lists (see Section 2 for the definition) are evolvable
when the distribution is restricted to be uniform [Mic07] and a slightly different measure of
fitness is used to guide the evolutionary algorithm.

Valiant also demonstrates that even the restriction of PAC learning to statistical queries is
sufficient to simulate any evolutionary algorithm. The statistical query (SQ) learning model was
introduced by Kearns and is a natural restriction of the PAC learning that models algorithms
that use statistical properties of a data set rather than individual examples [Kea98]. Kearns has
shown that any SQ algorithm can be converted to a PAC algorithm that tolerates arbitrarily
high levels of random noise (bounded away from the information-theoretic barrier) and since
then his model became the main tool in designing noise-tolerant algorithms [Kea98, Byl94,
BFKV97, JSS97, BF02, DV04, Fel07]. Surprisingly, almost all the classes of functions (referred
to as concept classes in the context of learning) known to be PAC learnable are also learnable
by statistical queries (and hence learnable in the presence of random noise in the labels). The
notable exception is the concept class of parities that includes all functions equal to a XOR
of some subset of n Boolean variables. Interestingly, parities are provably not learnable by
SQs (unconditionally, i.e. without relying on any computational hardness assumptions) [Kea98,
BFJ+94]. This result is a special case of lower bounds based on the SQ dimension which was
introduced by Blum et al. [BFJ+94] and studied in a number of subsequent works [BKW03,
BF02, Yan05, KS06, She07]. Limitations on learnability in the SQ model imply limitations on
evolutionary algorithms. In particular, parities are not evolvable in Valiant’s model. Indeed the
class of parities appears to be biologically unnatural and hence the prediction of Valiant’s model
is consistent with our intuition.

Outside of the biological context, evolutionary algorithms can be seen as learning algorithms
that rely on the minimal amount of feedback from the environment. Namely they allow to
adapt the behavior of a system given only the information on the overall performance of the
system. Furthermore the process of the adaptation is based solely on local and greedy decisions.
This is in contrast to the usual learning paradigm which relies on the analysis of instances of

1To simplify the discussion, the domain in this problem and all the problems we discuss in this work is {0, 1}n

and Boolean functions have range {−1, 1}. As in the PAC model of learning, all the models are applicable to other
domains and can also be easily extended to non-Boolean functions.
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the learning problem together with the correct behavior on these instances. This suggests that
evolutionary algorithms might bring the advantages of learning to problems for which previous
learning approaches were not applicable.

1.1 Our Contribution

The primary goal of this work is to elucidate the capabilities and the limitations of Valiant’s
model. To this end we prove that evolvability is equivalent to learning by a natural restriction
of statistical queries, referred to as correlational statistical queries [BF02]. A correlational
statistical query (or CSQ) is a query for the correlation of a given function g with the unknown
target function f . The correlation is measured relative to the distribution D over the domain
of the learning problem and equals Ex∼D[f(x)g(x)]. To such a query a CSQ oracle returns an
estimate of Ex∼D[f(x)g(x)] within certain tolerance. For comparison, the general SQ model
allows queries that provide estimates of Ex∼D[ψ(x, f(x))] for any function on labeled examples
ψ : {0, 1}n × {−1, 1} → {−1, 1}. One side of the equivalence (stated in Theorem 4.1) is just
a refinement of Valiant’s observation that evolvability implies learnability by general statistical
queries. For the other direction we prove the following result.

Theorem 1.1 Let C be a concept class CSQ learnable over a class of distributions D by a
polynomial-time algorithm A. There exists an evolutionary algorithm N(A) such that C is
evolvable by N(A) over D.

To prove Theorem 1.1, we first decompose CSQs into correlational queries that only allow com-
parisons of the correlation with a fixed value. We then show how to build a general “fitness
landscape” that provides answers to all the “simple” correlational queries and generates a hy-
pothesis approximating the target function. We are not aware of any similar techniques having
been used before.

We give several applications of our equivalence. Building on an observation of Bshouty and
Feldman, we show that any SQ learning algorithm over a distribution D can be converted to a
CSQ learning algorithm over D. In this result if D is not an efficiently samplable distribution
(and not close to one), then the algorithm we obtain is non-uniform, that is, different algorithms
are used for problems of different sizes (Theorems 3.2 and 3.3 give formal statements of these
results). This implies that every concept class known to be SQ learnable (and hence almost
every concept class known to be PAC learnable) is evolvable when the distribution over the
domain is fixed. In particular, this includes the concept class of linear threshold functions
(that includes conjunctions, disjunctions, and decision lists) [BFKV97], k-term DNF/CNF for
constant k [Val84, Kea98], and decision trees of constant rank [Riv87, Kea98] (cf. [KV94] for
the definitions of the above concept classes).

We also use our equivalence to give lower bounds specific to evolvability. In particular,
building on ideas of Blum et al. [BFJ+94] and Bshouty and Feldman [BF02], and using Freund’s
boosting algorithm [Fre95], we show a simple structural characterization of weak distribution-
independent evolvability (here weak and distribution-independent are used in the same sense as
in learning; see Section 2.1 for the definitions). Namely, only concept classes in which every
concept is representable as a linear threshold with “small” integer weights over a “small” set
of basis functions are weakly distribution-independently evolvable. A formal statement of this
equivalence is given in Theorem 5.5. Coupled with recent results of Buhrman et al. [BVdW07]
and Sherstov [She07] our characterization implies the following theorem.

Theorem 1.2 The concept classes of decision lists and linear threshold functions are not weakly
distribution-independently evolvable.

Decision lists are a subclass of linear threshold functions and we explicitly mention linear thresh-
old functions since the lower-bound is somewhat stronger for them. Theorem 1.2 is contrasted
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by a simple algorithm of Kearns that learns decision lists by statistical queries [Kea98] and the
algorithm of Blum et al. [BFKV97] that shows that linear threshold functions are SQ learnable.

It is important to note that while our positive result implies polynomial-time evolvability
of numerous concept classes, the evolutionary algorithms that are obtained from this general
transformation are likely not to be the most efficient and/or natural possible for a specific concept
class and distribution. In particular, the evolutionary algorithm for monotone conjunctions
over the uniform distribution implied by our reduction requires more complex representations
of intermediate hypotheses than the one given by Valiant [Val07].

1.2 Organization

Following the preliminaries, in Section 3 we define learning by correlational statistical queries
and relate it to the SQ model. In Section 4 we prove the equivalence of evolvability to learning
by correlational statistical queries. In Section 5 we give a characterization of weak distribution-
independent learnability by correlational statistical queries and the resulting lower bounds on
evolvability.

2 Models and Notation

For a positive integer ` let [`] denote the set {1, 2, . . . , `}. For a vector z and j ∈ [|z|] let zj

denote the jth element of z and let zj denote the prefix of length j of z. For every z, z0 equals
the empty string σ.

The domain of the functions discussed in this work are objects described by n Boolean
attributes, or Xn = {0, 1}n. An ensemble of distributions D = {Dn}∞n=1 where Dn is a distri-
bution over Xn is said to be samplable efficiently or p-samplable [BDCGL92] if there exists a
randomized polynomial-time algorithm S that for every n and x ∈ Xn, on input 1n outputs x
with probability Dn(x).

A concept class over X is a set of {−1, 1}-valued functions (also called concepts) over X.
A concept class together with a specific way to represent all the functions in the concept class
is referred to as a representation class. We only consider efficiently evaluatable representation
schemes, that is schemes, for which there exists a polynomial-time algorithm, that given a
representation of a function g and a point x ∈ Xn, computes g(x) in time polynomial in x and
the length of the representation of f . Whenever the meaning is clear from the context we use one
symbol to refer to both a function and its representation. Similarly we refer to a representation
class as just a concept class whenever a simple representation scheme is implicit in the definition
of the concept class.

The concept class of conjunctions consists of functions equal to a conjunction of a subset of
possibly negated variables. A conjunction is monotone if it does not include negated variables.
A parity function is a function equal to (−1)

∑
i∈S xi for some S ⊆ [n]. The concept class of

linear threshold functions consists of functions representable as sign(
∑

i∈[n] wixi − θ) for some
w ∈ Rn and θ ∈ R. We denote it by THn. A decision list of length k is described by a list
((`1, b1), (`2, b2), . . . , (`k, bk), bk+1), where for each i, `i is a variable or its negation and bi is a
Boolean value. The value of a decision list on a point x is bi where i is the smallest index for
which `i(x) = 1, and bk+1 if no such i exists. We denote the class of functions representable by
decision lists over n variables by DLn.

2.1 PAC Learning

The models we consider are based on the well-known PAC learning model introduced by Valiant
[Val84]. Let Cn be a representation class over Xn. In the basic PAC model a learning algorithm
is given examples of an unknown function f from Cn on points randomly chosen from some
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unknown distribution Dn over Xn and should produce a hypothesis h that approximates f .
Formally, an example oracle EX(f, Dn) is an oracle that upon being invoked returns an exam-
ple 〈x, f(x)〉, where x is chosen randomly with respect to Dn, independently of any previous
examples.

An algorithm is said to PAC learn Cn in time t if for every n, ε > 0, δ > 0, f ∈ Cn,
and distribution Dn over Xn, the algorithm given ε, δ, and access to EX(f,Dn) outputs, in
time t and with probability at least 1 − δ, a hypothesis h that is computable in time t and
satisfies2 EDn

[f(x) · h(x)] ≥ 1− ε. Here t is allowed to depend on n, 1/ε, 1/δ and the minimum
description length of f under the representation scheme of Cn. For simplicity we only consider
representation classes for which the description length of all functions in the class is bounded
by a certain polynomial in n. This allows us to drop the description length from the polynomial
bounds. We also drop subscript n when it is clear from the context.

The algorithm is said to (efficiently) learn C if t is polynomial in n, 1/ε and 1/δ. We say that
an algorithm learns C by a representation class H if the hypotheses output by the algorithm use
the representation scheme of H.

A number of variants of this basic framework are commonly considered. The basic PAC
model is also referred to as distribution-independent learning to distinguish it from distribution-
specific PAC learning in which the learning algorithm is required to learn only with respect to a
single distribution D known in advance. More generally, one can restrict the target distribution
to come from a class of distributions D known in advance (such as product distributions) to
capture both scenarios. We refer to this case as learning over D.

A weak learning algorithm is a learning algorithm that produces a hypothesis whose disagree-
ment with the target concept is noticeably less than 1/2 (and not necessarily any ε > 0). More
precisely, a weak learning algorithm produces a hypothesis h such that ED[f(x) ·h(x)] ≥ 1/p(n)
for some fixed polynomial p.

2.2 The Statistical Query Learning Model

In the statistical query model of Kearns the learning algorithm is given access to STAT(f,D) – a
statistical query oracle for target concept f with respect to distribution D instead of EX(f,D).
A query to this oracle is a pair (ψ, τ), where ψ : {0, 1}n×{−1, 1} → {−1, 1} is a query function
and τ ∈ [0, 1] is a real number called the tolerance of the query. The oracle may respond to the
query with any value v satisfying |ED[ψ(x, f(x))]− v| ≤ τ . For convenience, we allow the query
functions to be real valued in the range [−1, 1]. This extension was introduced by Aslam and
Decatur [AD98] and is equivalent to the original SQ model (cf. [BF02]).

An algorithm A is said to learn C in time t from statistical queries of tolerance τ if A PAC
learns C using STAT(f,D) instead of EX(f, D) and for each query (ψ, τ ′) made by A, ψ can
be evaluated in time t and τ ′ ≥ τ . Eliminating the dependence on random examples eliminates
the confidence parameter δ necessary in the definition of the PAC model.

The algorithm is said to (efficiently) learn C if t is polynomial in n and 1/ε, and τ is lower
bounded by the inverse of a polynomial in n and 1/ε. If the learning algorithm is randomized
we require that it succeeds with probability at least 1/2.

2.3 Evolvability

In this section we provide a formal definition of Valiant’s evolvability model [Val07]. Our
notation follows Valiant’s with insignificant simplifying deviations.

Let f denote the unknown “ideal” function and D be a distribution over the domain. As
in PAC learning, let ε denote the desired accuracy of approximation. For brevity, in Valiant’s

2This is equivalent to PrDn [f(x) = h(x)] ≥ 1− ε/2.
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model ε is also used as the confidence parameter (that is δ = ε). The performance of a Boolean
function r relative to f over D is defined as Perff (r,D) = ED[r(x) · f(x)]. For an integer s the
empirical performance Perff (r,D, s) of r is a random variable that equals 1

s

∑
i≤s(r(zi) · f(zi))

for z1, z2, . . . , zs ∈ {0, 1}n chosen randomly and independently according to D.
An evolutionary algorithm or “fitness landscape” N is defined by a quadruple (R, Neigh, µ, t)

where:

• R is a representation class;

• Neigh(r, ε) is a function that for r ∈ R, equals the neighborhood of r, that is, the set of
representations into which r randomly “mutates”. For all r and ε, r ∈ Neigh(r, ε) and
|Neigh(r, ε)| ≤ pN (n, 1/ε) for a fixed polynomial pN .

• µ(r, r1, ε) is a function that for r ∈ R and r1 ∈ Neigh(r, ε), gives the probability that r
“mutates” into r1;

• t(r, ε) is the function that equals the tolerance at r. The tolerance determines the difference
in performance that a “mutation” has to exhibit to be considered beneficial (or deleterious).
The tolerance is bounded from above and below by two polynomially-related polynomials
in 1/n and ε. That is, there exist a polynomial tuN (1/n, ε) and a constant η ≥ 1 such that
for all r ∈ R and ε > 0, tuN (1/n, ε) ≥ t(r, ε) ≥ tuη

N (1/n, ε).

In addition, functions Neigh, µ, and t need to be computable by randomized Turing machines
in time polynomial in n and 1/ε.

We now give the definition of the basic step of an evolutionary algorithm. For a function f ,
distribution D, evolutionary algorithm N = (R, Neigh, µ, t), a representation r ∈ R, accuracy
ε, and sample size s, the mutator Mu(f, D, N, r, ε, s) is a random variable that takes a value r1

determined as follows. For each r′ ∈ Neigh(r, ε), it first computes an empirical value of v(r′) =
Perff (r′, D, s). Let Bene = {r′ | v(r′) ≥ v(r)+ t(r, ε)} and Neut = {r′ | |v(r′)− v(r)| < t(r, ε)}.
Then

(i) if Bene 6= ∅ then output r1 ∈ Bene with probability µ(r, r1, ε)/
∑

r′∈Bene µ(r, r′, ε);

(ii) if Bene = ∅ then output r1 ∈ Neut with probability µ(r, r1, ε)/
∑

r′∈Neut µ(r, r′, ε).

Definition 2.1 Let C be a concept class, D be a distribution and N = (R,Neigh, µ, t) be an
evolutionary algorithm. Concept class C is evolvable by N over D if there exist polynomials
s(n, 1/ε) and g(n, 1/ε) such that for every n, every f ∈ Cn, every ε > 0, and every r0 ∈ Rn,
with probability at least 1− ε, a sequence r0, r1, r2, . . ., where ri = Mu(f, D,N, ri−1, ε, s(n, 1/ε))
will have Perff (rg(n,1/ε), Dn) > 1− ε.

The polynomial g(n, 1/ε) upper bounds the number of generations needed for the evolution
process. The polynomial s(n, 1/ε) upper bounds the size of the population required to test each
mutation.

A concept class C is evolvable with initialization if convergence is required only when the
evolution starts from a single fixed representation r0. A concept class C is evolvable over D if
there exists an evolutionary algorithm N such that C is evolvable by N over D. It is easy to
see that evolutionary algorithms are a restricted form of PAC learning algorithms. Therefore
we use the term weak evolvability in the same sense as for the PAC learning. A concept class
C is evolvable if it is evolvable over all distributions by a single evolutionary algorithm (we
emphasize this by saying distribution-independently evolvable). Similarly, we say that a concept
class C is evolvable over a set of distributions D if it is evolvable over every D ∈ D (by a single
evolutionary algorithm).

In this work we allow the representation class of an evolutionary algorithm to compute real-
valued functions from {0, 1}n to [−1, 1] (and not only to {−1, 1}). Performance of a function
φ : {0, 1}n → [−1, 1] relative to the ideal function f over Dn is defined as before Perff (φ,Dn) =
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EDn
[f(x)φ(x)]. Instead of thinking of such hypotheses as real-valued functions one can also

think of them as randomized Boolean functions. Namely, let Φ(x) denote a random variable that
equals 1 with probability (1 + φ(x))/2, and −1 otherwise (and hence its expectation is φ(x)).
Here we define the performance of Φ(x) to be Perff (Φ, Dn) = EΦ,Dn

[f(x)Φ(x)] (that is the
expectation also includes the coin flips of Φ). Note that Perff (Φ, Dn) = Perff (φ,Dn) and with
either definition the evaluation of performance through random sampling can be done as in the
original model. Removing this restriction imposed by Valiant for simplicity makes the design of
evolutionary algorithms considerably more convenient. In addition, in Theorem A.3 (Appendix
A) we prove that when evolving over any set of unconcentrated (that is without points with non-
negligible weight) distributions, the random coin flips can be replaced by k-wise independent
coin flips for polynomial k without affecting the behavior of the evolutionary algorithm. For
evolutionary algorithms produced by our reduction from CSQ algorithms the above is true also
when evolving over any fixed p-samplable distribution (not only unconcentrated). In particular,
Corollaries 4.5 and 4.6 and similar results do not depend on this restriction.

3 Correlational Statistical Queries

In this section we define a restricted class of statistical query algorithms and relate it to the
general SQ model. According to the definition of statistical query, the query function ψ :
{0, 1}n × {−1, 1} → [−1, 1] is a function of two parameters: the point and the label. We
distinguish two types of statistical queries based on their query function. We say that a query is
target-independent if ψ(x, `) ≡ φ(x) for a function φ : {0, 1}n → [−1, 1], that is, if ψ is a function
of the point x alone. We say that a statistical query is correlational, if ψ(x, f(x)) ≡ φ(x)f(x)
for a function φ : {0, 1}n → [−1, 1]. We say that an algorithm is a correlational statistical query
(CSQ) algorithm if it uses only correlational statistical queries. We use the following simple fact
by Bshouty and Feldman [BF02] to relate learning by statistical queries to learning by CSQs
(we include the proof for completeness).

Lemma 3.1 ([BF02]) Any statistical query (ψ, τ) with respect to any distribution D can be
answered using a statistical query that is target-independent and a correlational statistical query,
each of tolerance τ/2 and with respect to distribution D.

Proof: The following equation proves the statement:

ED[ψ(x, f(x))] = ED

[
ψ(x,−1)

1− f(x)
2

+ ψ(x, 1)
1 + f(x)

2

]

= ED

[
ψ(x, 1)− ψ(x,−1)

2
f(x)

]
+ ED

[
ψ(x, 1) + ψ(x,−1)

2

]
.

¤
A query that is target-independent can be answered by estimating the expectation of a

random variable that does not depend on f . This can be done by random sampling given points
randomly generated according to D. For example, if the target distribution is uniform over the
domain, then a learning algorithm can estimate the desired expectations by evaluating them
on randomly and uniformly generated points in {0, 1}n. More generally, for any distribution
that can be sampled efficiently, we can use the sampling algorithm to create random samples
from the distribution and use them to evaluate answers to queries that are independent of f .
Therefore Lemma 3.1 implies that given the ability to randomly sample points according to D
it is possible to simulate general statistical queries using only correlational statistical queries.

Theorem 3.2 If C is a representation class SQ learnable over a p-samplable ensemble of dis-
tributions D = {Dn}∞n=1 then C is CSQ learnable over D.
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A somewhat weaker version of this result also holds for general distributions.

Theorem 3.3 Let C be a representation class SQ learnable over an arbitrary ensemble of dis-
tributions D = {Dn}∞n=1. There exists a non-uniform polynomial-time algorithm that learns C
over D from correlational statistical queries alone.

Proof: Let A be an SQ algorithm for learning C, let t(n, 1/ε) be a polynomial upper bounds
on the running time of A and let τ(n, 1/ε) be the lower bound on the tolerance of each SQ of
A. Hoeffding’s bounds imply that estimating a target-independent statistical query to accuracy
τ(n, 1/ε) with confidence at least 1 − δ can be done using a random independent sample of
points from D of size O(τ−2(n, 1/ε) log (1/δ)) [Hoe63]. Let Q(n, ε) be the set of all the target-
independent queries that A might ask in any of its legal executions for the given n and ε (that
is for all settings of random coins and all possible responses from a statistical query oracle). It
is easy to see that |Q(n, ε)| ≤ 2t(n,1/ε). Therefore by using a random sample of size

O(τ−2(n, 1/ε) ln (Q(n, ε))) = O(τ−2(n, 1/ε) · t(n, 1/ε)) ,

the estimation of each possible target-independent statistical query of A will be within the
desired tolerance with probability at least 1/2. This implies that there exists a sample of
polynomial size that can be used to estimate all the target-independent statistical queries of
A within the desired tolerance. Therefore given such sample as part of the description of the
learning algorithm (also referred to as advice) we can simulate A with access only to CSQs. We
remark that for most algorithms a significantly better estimates of Q(n, ε) are possible and hence
significantly smaller sample will be sufficient to estimate all the target-independent queries of
A. ¤

We also note that certain statistical query algorithms require access to randomly unlabeled
points from the target distribution in addition to statistical queries (such as the algorithm
of Blum et al. for learning linear threshold functions [BFKV97]). Clearly, the reductions in
Theorems 3.2 and 3.3 support such algorithms.

4 Equivalence of Learnability from CSQs and Evolvability

In this section we prove that a concept class is learnable via correlational statistical queries
if and only if it is evolvable. We first note that one of the directions of this equivalence is
immediate. As it was observed by Valiant, concept classes that are evolvable are also learnable
from statistical queries [Val07]. The statistical queries are only used to replace evaluations of
empirical performance of functions in R in order to find the sets Bene and Neut at every step.
By the definition of Perff , these estimates are correlational queries.

Theorem 4.1 If C is evolvable over a class of distributions D then C is learnable from correla-
tional statistical queries over D.

4.1 Evolutionary Algorithms from CSQ Algorithms

To prove the other direction, of the equivalence we first prove that learning from correlational
statistical queries is equivalent to learning from a further restricted form of correlational statis-
tical queries. Namely, for a function f and a distribution D we define an oracle CSQ>(f, D)
to be the oracle that accepts queries of the form (r, θ, τ) where r is a function from {0, 1}n to
[−1, 1], θ > 0 is the threshold and τ > 0 is the tolerance. To such a query (referred to as a
CSQ> query) the oracle returns 1 when ED[r(x)f(x)] ≥ θ + τ , 0 when ED[r(x)f(x)] ≤ θ − τ ,
and either 0 or 1, otherwise. Clearly, a single CSQ (r, τ) is sufficient to simulate query (r, θ, τ)
to CSQ>(f, D). We prove that the converse is also true in the following lemma.

8



Lemma 4.2 For every function f and distribution D, a correlational query (r, τ) can be replaced
by dlog(1/τ)e+ 1 queries to CSQ>(f, D). Each of the produced queries is of the form (r′, θ, τ ′),
where r′ ∈ {r,−r}, τ ′ = τ/4, and θ ≥ τ/4.

Proof: Let v = ED[r(x)f(x)]. Queries to CSQ>(f,D) allow to perform comparisons of v
with any value in (0, 1] up to accuracy τ/2. In addition by asking queries on function −r(x)
it is possible to compare v with any value in [−1, 0) up to accuracy τ/2. Therefore we can
perform a binary search on the interval [−1, 1] until v is confined to an interval [v`, vu] such that
vu− v` ≤ τ . Due to possible imprecision of the answers from CSQ>(f, D) we can only conclude
that v ∈ [v` − τ/2, vu + τ/2]. Let v′ = (v` + vu)/2. By the properties of the search, |v′ − v| ≤ τ
and hence is a valid answer to the query (r, τ). To ensure that for every query the threshold θ
is at least τ/4, we replace every query (r′, θ, τ/2) with θ ∈ [0, τ/4] by query (r′, τ/4, τ/4). This
query satisfies the requirements of the lemma and any valid answer to this query is also a valid
answer to query (r′, θ, τ/2). ¤

It is easy to observe that evolvability relies on comparisons of the performance of candidate
hypotheses to certain threshold values. In this sense evolvability is very similar to learning from
queries to a CSQ> oracle. We now describe our main construction that utilizes this similarity to
simulate queries to a CSQ> oracle in an evolutionary algorithm. To simplify the presentation,
we first give a version of the construction that handles only deterministic CSQ algorithms and
requires initialization. In Section 4.2 we show a construction that does not require initialization
and also allows randomization.

Theorem 4.3 Let C be a concept class CSQ learnable over a class of distributions D by a
deterministic polynomial-time algorithm A. There exists an evolutionary algorithm N(A) =
(R,Neigh, µ, t) such that C is evolvable by N(A) over D with initialization.

Proof: Let H be the representation class of A’s hypotheses. We first apply Lemma 3.1 to
convert A to algorithm A′ that uses only queries to CSQ>(f, D). Let q(n, 1/ε) be a polynomial
upper bound on the number of queries asked by A′ and let τ(n, 1/ε) denote the lower bound
on the tolerance and thresholds of the queries asked by A′. We can safely assume that all the
queries are asked with tolerance τ . For i ∈ [q] and z ∈ {0, 1}i−1, let (φε,z(x), θε,z, τ) denote the
ith query that A′ asks given that the answers to the previous i− 1 queries are as specified by z.
Here for j ≤ i − 1, bit zj is the answer to the jth query. For z ∈ {0, 1}q we denote by hε,z the
hypothesis produced by A′ given that its queries were answered according to z (we can assume
for simplicity that exactly q queries are asked in every possible execution of A′).

The high-level idea of our construction is to get the answer to a CSQ> (φ, θ, τ) of A′ by
trying to “add” φ(x) to the current hypothesis. For an appropriate choice of the threshold, this
augmented hypothesis will be chosen as the next generation if and only if ED[f(x)φ(x)] ≥ θ.
This allows the evolutionary algorithm to “record” the answer to the CSQ>. All the answers
that were obtained so far are “remembered” in the current representation. Finally, given the
answers to all the queries of A′, the evolutionary algorithm mutates into the representation
equal to the final hypothesis of A′ for the given answers.

Queries produced by A′ and their number might depend on the value of ε. Therefore our
simulation will require different hypothesis representations for different values of ε. To avoid
creating a separate set of states for every value of ε we create a set of states for each ε ∈
{1

2 , 1
4 , 1

8 , . . . , 2−n}. To simulate the evolutionary algorithm for accuracy ε′ we simulate the
algorithm on ε = 2blog ε′c (i.e. the largest power of 2 that does not exceed ε′). This will not
affect any polynomial bounds.

We will now define the evolutionary algorithm N(A) = (R, Neigh, µ, t) for C formally. For
i ∈ [q(n, 1/ε)] and z ∈ {0, 1}i, we define

rε,z(x) =
1

q(n, 1/ε)

∑

j∈[i], zj=1

φε,zj−1(x) and Rε = {rε,z}i∈[q(n,1/ε)],z∈{0,1}i .
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We remind the reader that zj−1 denotes the prefix of length j − 1 of z. Let

R = H ∪ {rσ} ∪

 ⋃

k∈[n]

R2−k


 ,

where rσ ≡ 0 (σ denotes the empty string).
We now define functions Neigh, µ and t on R. Let ∆ ∈ (0, 1) be a real value to be defined

later.

1a r = rσ: Neigh(r, ε) = {rσ, rε,0, rε,1}; µ(r, r, ε) = µ(r, rε,1, ε) = ∆, µ(r, rε,0, ε) = 1 − 2∆;
t(r, ε) = θε,σ

q(n,1/ε) .

1b r = rε,z for z ∈ {0, 1}i where i ∈ [q(n, 1/ε) − 1]: Neigh(r, ε) = {r, rε,z0, rε,z1}; µ(r, r, ε) =
µ(r, rε,z1, ε) = ∆, µ(r, rε,z0, ε) = 1− 2∆; t(r, ε) = θε,z

q(n,1/ε) .

2 r = rε,z for z ∈ {0, 1}q(n,1/ε): Neigh(r, ε) = {r, hε,z}; µ(r, r, ε) = ∆, µ(r, hε,z, ε) = 1 −∆;
t(r, ε) = 1

q(n,1/ε) .

3 r = h for h ∈ H: Neigh(r, ε) = {r}; µ(r, r, ε) = 1, t(r, ε) = 1
q(n,1/ε) .

This evolutionary algorithm requires initialization to state rσ. The initialization ensures
that for every value of ε, the evolution process only goes through representations in Rε before
reaching a representation in H (in which it stays forever). Also note that the neighborhood of
rσ is defined exactly as the neighborhood of rε,σ. Therefore the definition given in item 1a is
essentially a partial case of the definition in 1b.

Claim 4.4 C is evolvable by N(A) over every distribution D ∈ D.

Proof: As before (and without loss of generality) we assume that ε is an integer power of 2. We
define the bound on the number of generations g(n, 1/ε) = q(n, 1/ε) + 1 and let ∆ = ε

4g(n,1/ε)

(used in the definition of N(A)). Let s(n, 1/ε) be the size of a sample sufficient to estimate any
random variable V ∈ [−1, 1] to tolerance τ ′ = τ(n,1/ε)

2q(n,1/ε) with probability at least 1 − ε
6g(n,1/ε) .

Hoeffding’s bound implies that s(n, 1/ε) = c0q
2(n, 1/ε) · τ−2(n, 1/ε) · log (1/ε) for a constant c0

will suffice [Hoe63].
Let f ∈ C be the ideal function and let r0 = rσ, r1, r2, . . . , rg be a sequence of representation

produced by rk = Mu(f, D,N(A), rk−1, ε, s(n, 1/ε)). Our goal is to prove that with probability
at least 1− ε, Perff (rg, D) ≥ 1− ε. We first note that for every representation r, the neighbor-
hood of r contains at most three representations. Therefore at most 3 · g(n, 1/ε) estimations of
performance on a sample of size s will be required. By the choice of s, each of these estimates is
within τ ′ = τ(n,1/ε)

2q(n,1/ε) of the true performance with probability at least 1− ε
6p(n,1/ε) and therefore

all of them are within τ ′ with probability at least 1− ε/2. For a representation r, we denote the
obtained estimate by v(r).

Next, assuming that all the estimates are within τ ′, we prove that for every z of length
i ∈ {0, 1, . . . , q − 1}, if rk = rε,z then with probability at least 1− ε

2p(n,1/ε) , rk+1 = rε,zb, where
b is a valid answer to query (φε,z(x), θε,z, τ) from CSQ>(f,D). Here rε,σ refers to rσ.

According to the definition of N(A), Neigh(rε,z, ε) = {rε,z, rε,z0, rε,z1}. Representations rε,z

and rε,z0 compute function φ′ = 1
q(n,1/ε)

∑
j≤i, zj=1 φε,zj−1(x) and rε,z1 computes function

1
q(n, 1/ε)


 ∑

j≤i, zj=1

φε,zj−1(x) + φε,z


 = φ′ +

φε,z

q(n, 1/ε)

since (z1)i+1 = 1 and (z1)i = z. By the definition, t(rε,z, ε) = θε,z/q(n, 1/ε) ≥ 2τ ′ and therefore
|v(rε,z0)− v(rε,z)| ≤ 2τ ′ ≤ t(rε,z, ε) meaning that rε,z0 ∈ Neut.
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If rε,z1 ∈ Bene then rk+1 = rε,z1 and v(rε,z1)− v(rε,z) ≥ t(rε,z, ε). But

v(rε,z1)− v(rε,z) ≤ Perff (rε,z1, D)− Perff (rε,z, D) + 2τ ′ =
Perff (φε,z, D)

q(n, 1/ε)
+ 2τ ′ .

That is,
ED[f · φε,z] ≥ q(n, 1/ε)(t(rε,z, ε)− 2τ ′) = θε,z − τ(n, 1/ε) .

Therefore b = 1 is indeed a valid answer from CSQ>(f, D) to query (φε,z(x), θε,z, τ).
If rε,z1 6∈ Bene then a representation from Neut will be chosen according to its relative

probability. By the definition of µ(rε,z, ε), with probability at least 1 − 2∆ = 1 − ε
2g(n,1/ε) ,

rk+1 = rε,z0. In this case rε,z1 6∈ Bene implies that v(rε,z1) − v(rε,z) < t(rε,z, ε). By the same
argument as in the previous case, this implies that

ED[f · φε,z] ≤ q(n, 1/ε)(t(rε,z, ε) + 2τ ′) = θε,z + τ(n, 1/ε) .

Therefore b = 0 is indeed a valid answer from CSQ>(f, D) to query (φε,z(x), θε,z, τ).
By the properties ofA′, if z is of length q(n, 1/ε) and for each i ≤ q(n, 1/ε), zi is a valid answer

to query (φε,z(x), θε,z, τ) then hε,z (the output of A′ on responses z) satisfies Perff (hε,z, D) =
ED(f ·hε,z) ≥ 1−ε. The neighborhood of rε,z is {rε,z, hε,z}. If hε,z ∈ Bene or Neut = {rε,z, hε,z}
then with probability at least 1 − ∆ = 1 − ε

4g(n,1/ε) , rg = hε,z. Otherwise, Bene = ∅ and
Neut = {rε,z} and therefore rg = rε,z. This only holds if Perff (rε,z, D) − Perff (hε,z, D) ≥
t(rε,z, ε)− 2τ ′ > 0. Hence Perff (rε,z, D) > 1− ε.

Therefore, under the assumption that all the estimates of performance are within τ ′, with
probability at least 1 − ε/2, Perff (rg, D) > 1 − ε and hence Perff (rg, D) > 1 − ε holds with
probability at least 1− ε. ¤(Cl. 4.1)

To finish the proof we also need to establish that N(A) is a valid evolutionary algorithm. The
representation class R is polynomially evaluatable; the size of the neighborhood of each state is
bounded by a polynomial pN(A) = 3; and Neigh, µ, and t are clearly computable in polynomial
(in n and 1/ε) time. We also need to bound t from above and below by two polynomially
related polynomials in 1/n, ε. By the definition of t and properties of A′, for all r ∈ R and
ε > 0, 1/q(n, 1/ε) ≥ t(r, ε) ≥ τ(n, 1/ε)/q(n, 1/ε). We can assume that q(n, 1/ε) ≥ max{1/ε, n}
(“dummy” queries can always be added to A′ if needed) and set tuN(A)(1/n, ε) = 1/n+ ε. Then
since τ(n, 1/ε) is lower bounded by an inverse of a polynomial in n and 1/ε we obtain that
there exists a constant η ≥ 1 such that 1/n + ε ≥ 1/q(n, 1/ε) ≥ t(r, ε) ≥ τ(n, 1/ε)/q(n, 1/ε) ≥
(1/n + ε)η. ¤(Th. 4.3)

Theorem 4.3 with the results in Section 4.2 gives Theorem 1.1. Using Theorems 3.2 and 1.1
we can obtain evolutionary algorithms from any SQ algorithm. For example,

Corollary 4.5 (from [BFKV97]) For every p-samplable distribution D, TH is evolvable over D.

Corollary 4.6 (from [Val84, Kea98]) For every p-samplable distribution D, and constant k,
k-CNF/DNF (that includes k-term DNF/CNF) is evolvable over D.

4.2 Randomization and Initialization

In this section we augment the construction given in Theorem 1.1 to allow evolution from any
state (that is without initialization) and to allow randomization in the source CSQ algorithm.

To prove that randomization can be handled we first note that random choices are inherent
in the model of evolvability and therefore all that needs to be done is to translate random
choices made by an evolutionary algorithm into random bits used in the computation of a CSQ
algorithm. Our proof below formalizes this intuition.
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Lemma 4.7 Let C be a concept class CSQ learnable over a class of distributions D by a
probabilistic polynomial-time algorithm A. There exists an evolutionary algorithm N(A) =
(R,Neigh, µ, t) such that C is evolvable by N(A) over D with initialization.

Proof: We first need to increase the confidence of A from 1/2 to 1− ε/2. This can be done in
a standard way: by running A log (2/ε) times on independent random coin flips and testing the
obtained hypotheses. Note that testing of a hypothesis can be done by a single CSQ.

Assume for simplicity that A flips a single random unbiased coin. For b ∈ {0, 1}, let Ab

denote A executed with the outcome of the coin flip equal to b. Let N(Ab) = (Rb,Neighb, µb, tb)
be the evolutionary algorithm for Ab constructed as in the proof of Theorem 4.3 (we refer to all
the representations in Rb by using superscript b).

We now define N(A) = (R, Neigh, µ, t) as follows.

• R = R0 ∪R1 ∪ {rσ}, where rσ ≡ 0.

• For b ∈ {0, 1} and r ∈ Rb, Neigh, µ, and t are equal to Neighb, µb and tb.

• NeighN (rσ, ε) = {rσ, r0
σ, r1

σ}.
• µ(rσ, r0

σ, ε) = µ(rσ, r1
σ, ε) = (1−∆)/2, µ(rσ, rσ, ε) = ∆; t(rσ, ε) = tuN (1/n, ε).

As in the proof of Theorem 4.3, we can assume that the performance of all the states in
NeighN (rσ, ε) is estimated with accuracy higher than tuN (1/n, ε)/2. This implies that when
rσ is reached, Neut = {rσ, r0

σ, r1
σ}. We choose ∆ to be small enough to be absorbed by the

bound on the total probability of failure ε/2. We can therefore assume that the state rσ is not
chosen. Under this assumption, r0

σ and r1
σ will be each chosen with probability 1/2 producing

the outcome a coin flip. Starting from representation rb
σ, N(A) is equivalent to N(Ab) and

therefore the result of this transformation is equivalent to running Ab with probability 1/2 for
each b ∈ {0, 1}. This, by our definition, is exactly A. Note that the number of generations
required for convergence grows only by 1.

To produce any polynomial ρ(n, 1/ε) number of random bits the same splitting is repeated
ρ(n, 1/ε) times. For each outcome of the coin flips v ∈ {0, 1}ρ from representation rv

σ the
evolutionary algorithm executes N(Av) where Av is A with its random coin flips set to v. The
number of generations required for convergence grows by ρ(n, 1/ε). ¤

We now describe how to create evolutionary algorithms that converge when started in any
state. The idea of this modification is to use the fact that evolutionary mechanisms that we
create inexorably reach some representation with a final hypothesis (that is they do not get
“stuck”). Once the algorithm is in one of such representations it is possible to test whether
the representation computes a hypothesis with appropriately high performance. If this does not
hold the algorithm if forced to “re-initialize” and to start from the initial representation rσ.

Theorem 4.8 (≡1.1) Let C be a concept class CSQ learnable over a class of distributions D
by a probabilistic polynomial-time algorithm A. There exists an evolutionary algorithm N(A) =
(R,Neigh, µ, t) such that C is evolvable by N(A) over D with initialization.

Proof: Let N ′(A) be the evolutionary algorithm obtained in the proof of Theorem 4.7. We
will modify N(A′) to produce N(A) that does not require initialization. First note that, if
N ′(A) is started in any coin-flipping representation rw

σ for a vector of partial results of coin
flipping w (of length at most ρ(n, 1/ε)) or representation rv

ε,z ∈ N(Av) some v ∈ {0, 1}ρ and a
vector z of partial replies to CSQ> queries, then with probability at least 1 − ε, after at most
ρ(n, 1/ε) + q(n, 1/ε) steps, the algorithm will reach either state rv

ε,z′ for some v ∈ {0, 1}ρ and
z′ ∈ {0, 1}q or hv ∈ Hv for some v ∈ {0, 1}ρ. This is true since N ′(A) stays in the same
representation only with small probability (that we denote by ∆). Namely, as follows easily
from our prior analysis, with probability at least 1−∆, in every step of N ′(A), either the result
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of a coin flip or an answer to a CSQ> query is recorded in the current representation. Therefore
it is sufficient to prove convergence from representations in the set

{
rv
ε,z′ | v ∈ {0, 1}ρ, z′ ∈ {0, 1}q

} ⋃
{hv ∈ Hv | v ∈ {0, 1}ρ} .

We first handle the convergence from a representation hv that has performance lower than 1− ε
(this can only happen if the algorithm was not started from rσ). Our fix consists of checking
whether Perff (hv, D) ≥ 1− ε and if not, “re-initializing” the evolutionary algorithm.

To check this condition we add a representation computing function (1 − tuN

1−ε )hv to the
neighborhood of hv with threshold t = tuN . If

Perff (hv, D)− Perff

((
1− tuN

1− ε

)
hv, D

)
=

Perff (hv, D)
1− ε

tuN ≥ tuN

then Perff (hv, D) ≥ 1−ε. Therefore, if this representation is not deleterious then Perff (hv, D) <
1− ε and the algorithm will evolve into this representation for an appropriate choice of µ. Oth-
erwise (if Perff (hv, D) ≥ 1− ε), the algorithm will remain in representation hv. Note however
that the transitions are based on imprecise empirical estimates of performance and not on the
actual performance. To handle this imprecision we can assume that A produces a hypothesis
with performance at least 1− ε/2 whereas we have to “re-initialize” only if the performance is
less than 1 − ε. It is possible to distinguish between these situations even when estimates of
performance are imprecise. In particular, precision of ε · tuN/8 will be sufficient. We omit the
straightforward details of this and other analogous modifications to simplify the presentation.

Formally, for hv ∈ Hv, we denote the representation computing (1 − tuN

1−ε )hv by hv
ε,0 and

define

• Neigh(hv, ε) = {hv, hv
ε,0};

• µ(hv, hv, ε) = ∆, µ(hv, hv
ε,0, ε) = 1−∆;

• t(hv, ε) = tuN (1/n, ε).

To “re-initialize” the algorithm we add a sequence of representations with performance gradually
approaching 0. The difference in the performance of any two adjacent representations in the
sequence is at most tuN and therefore each of the mutations in the sequence will be always
neutral. For every integer i ≤ 1/tuN − 1, we add a representation hv

ε,i. The function computed
by hv

ε,i is (1− i · tuN )hv
ε,0. For i ∈ {0, 1, . . . , d1/tuNe − 1} we define:

• Neigh(hv
ε,i) = {hv

ε,i, h
v
ε,i+1}; when i = d1/tuNe − 1, hv

ε,d1/tuNe refers to rσ.

• µ(hv
ε,i, h

v
ε,i, ε) = ∆, µ(hv

ε,i, h
v
ε,i+1, ε) = 1−∆;

• t(hv
ε,i, ε) = tuN (1/n, ε).

With this definition, for every i ≤ d1/tuNe − 2,

|Perff (hv
ε,i, D)− Perff (hv

ε,i+1, D)| = |Perff (hv
ε,0, D) · tuN | ≤ tuN ,

and
|Perff (hv

ε,d1/tuNe−1
, D)− Perff (rσ, D)| ≤ |Perff (hv

ε,0, D) · tuN | ≤ tuN .

Therefore hv
ε,i+1 ∈ Neut whenever the algorithm is at representation hv

ε,i. This implies that,
with high probability, after at most 1/tuN steps the algorithm will evolve to rσ. When the
algorithm reaches rσ the usual analysis applies. Also note that if the evolutionary algorithm
starts in any of the new representations hv

ε,i, it will evolve to rσ after at most 1/tuN − 1 steps.
Testing and “re-initialization” at a representation rv

ε,z′ for v ∈ {0, 1}ρ and z′ ∈ {0, 1}q can be
done in exactly the same way. There the “re-initialization” sequence will be taken only if both
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the performance of rv
ε,z′ is lower than 1− ε and hv

ε,z′ is not a beneficial mutation. This can only
happen when the performance of hv

ε,z′ is less than 1− ε, and in particular, the “re-initialization”
is required.

Finally note that the upper bound on the number of generations required for convergence
in this construction is at most 2ρ(n, 1/ε) + 2q(n, 1/ε) + 1/tuN + 1 and, in particular, remains
polynomial. ¤

An immediate corollary of Theorems 4.1 and 4.8 is that evolvability with initialization is
equivalent to evolvability without initialization. More generally, we can conclude that if a certain
property is possessed by our construction then evolvability with this property is equivalent to
general evolvability. For example we can conclude that evolvability with neighborhood sizes
bounded by 3 is equivalent to evolvability with neighborhood sizes bounded by a polynomial.

5 Limitations on Evolvability

In this section we will show an information-theoretic lower bound on learning by correlational
statistical queries and use it to prove that decision lists and linear thresholds are not evolvable.
Previous lower bounds given by Valiant [Val07] were “inherited” from learning in the more
powerful SQ model in which both decision lists and linear thresholds are learnable [BFKV97,
Kea98]. Our technique is based on the ideas behind the statistical query dimension of Blum et al.
[BFJ+94] and uses Freund’s boost-by-majority algorithm [Fre95] to produce a simple structural
characterization of weak learnability by CSQs.

Statistical query dimension (SQ-dim) characterization of Blum et al. [BFJ+94] states that
if a concept class C can be weakly SQ learned with respect to D then the number of mutually
“almost” uncorrelated functions in C is at most polynomial (with correlations measured over D).
It is well-known that this also implies that there exist a polynomial-size set of functions WD,
such that every function in C is correlated with some h ∈ W (such WD can be obtained by taking
a maximum set of “almost” uncorrelated functions in C). Here we prove that if, C is learnable
by CSQs alone then there exists a single polynomial-size set W such that for every distribution
D and every f ∈ C there exists h ∈ W that is correlated with f . By well-known results of
Freund [Fre95] and Goldmann et al. [GHR92], this property of C implies that every function
in C can be represented as a low-weight threshold of functions in W . However, according to a
recent observation of Sherstov [She07], communication complexity lower bounds of Goldmann
et al. [GHR92] and Buhrman et al. [BVdW07] imply that such representations do not exist for
decision lists and linear threshold functions. Therefore together with our characterization these
lower bounds imply lower bounds for evolvability.

5.1 Characterization

We say that a set of functions W γ-correlates with a concept class C over a class of distributions
D if for every f ∈ C and D ∈ D, there exists φ ∈ W such that |ED[f(x)φ(x)]| ≥ γ.

Definition 5.1 We say that a concept class C has correlational statistical query dimension
bounded by d(n) over a class of distributions D if for every n, there exists a set Wn of size
at most d(n) that 1

d(n) -correlates with C over D. We denote this by CSQ-dim(C,D) ≤ d(n).
We denote by CSQ-dim(C) the correlational statistical query dimension of C over the set of all
distributions.

We will now prove that weak learning by correlational statistical queries is information-
theoretically characterized by CSQ-dim. We start with the easier direction.

Theorem 5.2 Let C be a representation class and D be a class of distributions. If CSQ-
dim(C,D) = d(n) then C is weakly learnable over D by a CSQ algorithm (not necessarily
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efficient) that uses d(n) correlational statistical queries of tolerance 1/(3d(n)) and produces
1/(3d(n))-correlated hypotheses.

Proof: Let Wn be a set of at most d(n) functions that 1
d(n) -correlates with C over D. For every

n, the algorithm has Wn “hard-wired”. It asks a query (φ, 1
3d(n) ) for every φ ∈ Wn. Denote by

v(φ) the answer from the oracle to query (φ, 1
3d(n) ). If for a certain φ′ ∈ Wn, |v(φ′)| ≥ 2

3d(n)

then the algorithm returns the hypothesis h(x) ≡ sign(v(φ′))φ′(x).
By the definition of Wn, for every f ∈ C and D ∈ D, there exists φf,D ∈ Wn such that

|ED[f · φf,D]| ≥ 1
d(n) . The queries have accuracy 1

3d(n) and therefore |v(φf,D)| ≥ 2
3d(n) . On

the other hand, for every φ′, if |v(φ′)| ≥ 2
3d(n) then ED[f · sign(v(φ′))φ′] ≥ 1

3d(n) . Hence the
algorithm will always output a hypothesis that is 1

3d(n) -correlated with f over D. ¤
We will now prove the other direction of the characterization for deterministic CSQ algo-

rithms.

Theorem 5.3 Let C be a representation class and D be a class of distributions. If C is
weakly learnable over D by a (deterministic) CSQ algorithm that uses p(n) correlational sta-
tistical queries of tolerance τ(n) and produces γ(n)-correlated hypotheses then CSQ-dim(C,D) ≤
max{p(n) + 1, 1/τ(n), 1/γ(n)}.
Proof: Let A be the CSQ algorithm satisfying the conditions of the theorem. The set Wn is
constructed as follows. Simulate algorithm A and for every query (φi, τ) add φi to Wn and
respond with 0 to the query. Continue the simulation until it violates any of the complexity
bounds of A or A stops and returns hypothesis h. In the latter case, add h to Wn.

First, by the definition of Wn, |Wn| ≤ p(n) + 1 ≤ d(n). Now, assume that Wn does not
1

d(n) -correlate with C over D, that is there exists f ∈ C and D ∈ D such that for every φ ∈ Wn,
|ED[f · φ]| < 1

d(n) ≤ τ(n). This means that in our simulation, zeros are valid answers to the
queries. Therefore, by the definition of A, it returns hypothesis h such that ED[fh] ≥ γ(n) ≥

1
d(n) . But h ∈ Wn and therefore this contradicts the assumption. ¤

Note that Theorem 3.3 implies that CSQ-dim(C, {D}) is polynomially related to SQ-dim(C, D).
Our characterization produces a surprisingly simple way to describe all concept classes weakly

learnable by CSQs over all distributions. Let S be a set of Boolean functions. Denote by TH(k, S)
the set of all functions representable as sign(

∑
i≤k φi(x)) where for all i, φi ∈ S.

Theorem 5.4 A representation class C is weakly CSQ learnable over all distributions if and
only if there exist polynomials p(n) and q(n) such that Cn ⊆ TH(q(n), Sn), where |Sn| ≤ p(n)
and Sn can be generated by a polynomial-time algorithm G. Here G is randomized if and only
if the learning algorithm is randomized.

Proof: For the simple direction we use the well-known result of Hajnal et al. [HMP+93] that
states that if a function f ∈ TH(q(n), Sn) then for every distribution D, there exists a function
φ ∈ Sn such that |ED[f ·φ]| ≥ 1/q(n). Therefore, as in the proof of Theorem 5.2, Sn gives a weak
CSQ learning algorithm for C. The additional condition that Sn can be generated efficiently
implies that the weak learning CSQ algorithm is efficient.

For the other direction, let A be a weak CSQ learning algorithm for C. We first deal with the
deterministic case. Theorem 5.3 implies that there exist a polynomial d(n) and a set Wn of size
at most d(n) that 1

d(n) -correlates with C for every distribution D. Given such set of universal
weak hypotheses one can use Freund’s boost-by-majority algorithm [Fre95] with functions from
Wn used as weak hypotheses. When applied on uniform distribution over {0, 1}n and ε = 2−n

the boosting algorithm will generate a hypothesis equal to f and represented as a majority (for
{0, 1} valued functions) of `(n) = c0 · n · d2(n) functions from Wn (for a constant c0). In other
words, the boosting algorithm implies that f ∈ TH(`(n),Wn). A simpler proof of this result was
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also given by Goldmann et al. [GHR92]. It is easy to see from the proof of Theorem 5.3 that
Wn is indeed efficiently constructible.

If A is a randomized algorithm we denote by Wn,z the set of queries and a hypothesis
obtained by running A with its random coins set to z ∈ {0, 1}r(n) as described in the proof of
Theorem 5.3. Here r(n) is a polynomial upper bound on the number of random bits used by A.
Let Q =

⋃
z∈{0,1}r(n) Wn,z. The algorithms A succeeds with probability at least 1/2 over the

choice of z and therefore, for fixed f ∈ C and distribution D, with probability at least 1/2, there
exists φ ∈ Wn,z such that |ED[f ·φ]| ≥ 1/d(n). For each function f , each distribution generated
by Freund’s boosting algorithm is uniquely described by f and the weak hypotheses obtained by
the boosting algorithm so far. This implies that there are at most |C||Q|`(n) ≤ |C|(d(n)·2r(n))`(n)

different distributions that might be generated by Freund’s boosting algorithm when it uses A as
a weak learner. Now let Z be a set of t(n) = log (2|C|2|Q|`(n)) ≤ `(n)(r(n)+log d(n))+2 log (|C|)+
1 randomly and independently chosen settings of the coin flips and let WZ =

⋃
z∈Z Wn,z.

With probability at least 1/2, WZ will contain a weak hypothesis for every f ∈ C and every
distribution generated by the boosting algorithm for f . Therefore with probability at least 1/2,
Cn ⊆ TH(`(n),WZ). To finish the proof we need to note that t(n) is polynomial in n and hence
WZ can be generated efficiently. ¤

Theorems 4.3 and 4.1 imply the following characterization of weak distribution-independent
evolvability.

Corollary 5.5 A representation class Cn is weakly evolvable if and only if there exist polyno-
mials p(n) and q(n) such that Cn ⊆ TH(q(n), Sn), where |Sn| ≤ p(n) and Sn can be generated by
a polynomial-time randomized algorithm.

5.2 Lower Bounds

Our goal now is to discover which concept classes allow representation as low-weight thresh-
old functions over a polynomial-size basis. Sherstov has recently showed that communication
complexity lower bounds of Goldmann et al. imply that linear thresholds cannot be represented
as signs of low-weight thresholds of a small number of functions [GHR92, She07]. Sherstov’s
argument is based on an analysis of margin complexity of GHR(x, y) a specific function given
by Goldmann et al. [GHR92]. Here we give a simple and direct argument that relates the size
and weights of thresholds that allow representation of C to the relevant communication com-
plexity measure. We assume familiarity of the reader with the basic probabilistic two-party
communication protocols (cf. [KN97]) and start with several related definitions.

For a function h : {0, 1}m×{0, 1}n → {−1, 1} we say that a randomized protocol P computes
h with advantage δ if for every (x, y) ∈ {0, 1}m × {0, 1}n, P outputs h(x, y) with probability at
least 1/2+δ (over the coin flips of P ). Let c(P ) denote the worst case communication complexity
of protocol P (that is the maximum number of bits exchanged by the two parties). We refer to
the value c(P ) + log 1/δ as the cost of P .

Definition 5.6 For a function h : {0, 1}n × {0, 1}m → {−1, 1} let PP(h) denote the cost
c(P ) + log 1/δ of the minimum-cost protocol P that computes h with positive advantage δ.

We say that a Boolean function h over {0, 1}m×{0, 1}n is realized by a set of functions F if
for every specific setting of variables in {0, 1}m the function obtained over {0, 1}n is in F . That
is, for z ∈ {0, 1}m let hz(y) ≡ h(z, y) then h is realized by F if

{hz}z∈{0,1}m ⊆ F.

Our main lemma gives a protocol for functions that can be realized by thresholds over some
basis functions. This protocol is implicit in the work of Sherstov [She07] and is a variant of the
standard protocol for computing low-weight thresholds (cf. [GHR92]).
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Lemma 5.7 If h : {0, 1}m ×{0, 1}n → {−1, 1} is realized by TH(d, S) for some set of functions
S, then PP(h) ≤ log d + dlog |S|e+ 2.

Proof: Let s = |S| and f1, f2, . . . , fs be the elements of S. Let P be the following protocol
for h. Given x, Alice knows hx : {0, 1}m → {−1, 1} the restriction of h to specific values of
her input bits. By the conditions of the lemma, there exist integers a1, a2, . . . , as such that,
w =

∑
i∈[s] |ai| ≤ d and for every y, hx(y) = sign(

∑
i∈[s] aifi(y)). Therefore for each i,

Alice chooses, i with probability |ai|/w. She then sends the outcome j to Bob along with
b = sign(aj). The value computed by Bob (and the protocol) is b · fj(y). For every x and y,
hx(y) = sign(

∑
i∈[s] aifi(y)) and therefore with probability at least 1/2+1/(2w) ≥ 1/2+1/(2d)

over the choice of j, hx(y) = sign(aj)·fj(y). This implies that the cost of P is dlog se+1+log 2d,
and in particular, PP(h) ≤ log d + dlog |S|e+ 2. ¤

Goldmann et al. give a function GHR(x, y) : {0, 1}4m2 × {0, 1}2m → {−1, 1} that is realized
by halfspaces over {0, 1}2m and satisfies PP(GHR) ≥ (m− log m)/2− O(1) [GHR92] (they only
give this lower bound for one-way protocols but this is sufficient for our purposes and was
later extended to two-way protocols). Lemma 5.7 implies that halfspaces cannot be represented
as low-weight thresholds over a small basis since that would contradict the lower bound of
Goldmann et al. [GHR92]. Specifically,

Lemma 5.8 ([She07]) If THn ⊆ TH(d, S) then d|S| = Ω(2n/4/
√

n).

To obtain a similar result for decision lists we use the lower bound of Buhrman et al.
[BVdW07]. They show that PP(ODDMAXBIT) = Ω(n1/3), where ODDMAXBIT(x, y) is the func-
tion that equals 1 if and only if the smallest index i such that xi = yi = 1 is odd. It is not
hard to verify that ODDMAXBIT is realized by decision lists and therefore we obtain the following
lemma.

Lemma 5.9 If DLn ⊆ TH(d, S) then d|S| = 2Ω(n1/3).

Proof: We first verify that for every x, ODDMAXBITx(y) can be computed by a decision list. Let
i1 < i2 < · · · < ik be the indices of all the positions where x equals 1 and let bj = 1 if ij is
odd and −1 otherwise. Then by the definition, ODDMAXBITx(y) is computed by the decision list
(yi1 , b1), (yi2 , b2), . . . , (yik

, bk),−1). That is ODDMAXBIT is realized by DLn. Therefore if for some
set of functions S and integer d, DLn ⊆ TH(d, S) then ODDMAXBIT is realized by TH(d, S). This,
by Lemma 5.7, implies that log d+dlog |S|e+2 ≥ PP(ODDMAXBIT) = Ω(n1/3), proving our claim.
¤

Combined with Corollary 5.5, Lemmas 5.8 and 5.9 imply Theorem 1.2. More precisely,
Lemmas 5.8 and 5.9 imply a tradeoff between the number of queries used by a CSQ algorithm
for decision lists or linear threshold functions and the advantage it achieves over the random
guessing.

6 Conclusions

Our results show that Valiant’s evolvability model admits another natural theoretical charac-
terization. Our characterization gives new insights into the model and simplifies the analysis
of its power. In particular, it allows us to automatically obtain numerous new algorithms that
satisfy the onerous requirements of the evolvability framework. While the generated algorithms
are not necessarily the most natural and efficient, the essential parts of the transformation
can be used to obtain simpler algorithms for specific concept classes and distributions. We
will elaborate on this elsewhere. Using our equivalence we also obtained a characterization of
weak distribution-independent evolvability and applied it to concept classes of decision lists and
halfspaces.
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Our positive results only give distribution-specific evolutionary algorithms and the negative
results characterize weak distribution-independent evolvability. This leaves out perhaps the
most interesting case of strong distribution-independent evolvability. For example, we do not
know whether disjunctions/conjunctions are evolvable distribution-independently.

More generally, we believe that modeling of evolution as learning is a promising direction of
research and hope that our findings will encourage further work.
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A Equivalence of Boolean and Real-Valued Hypotheses
for Evolvability

In this section we argue that evolvability restricted to representations computing Boolean func-
tions is not significantly different from evolvability by representations computing real-valued
functions in the range [−1, 1] (or equivalently, randomized Boolean functions). We first show
that this is true when evolving with respect to unconcentrated distributions. Our proof is based
on the use of k-wise independent families of hash functions [CW77] that we now define.

Definition A.1 For integer k, `, and n, a family of functions G : {π : {0, 1}n → {0, 1}`} is
k-wise independent if for all distinct z1, z2, . . . , zk, the random variables π(z1), π(z2), . . . , π(zk)
are independent and uniformly distributed in {0, 1}` when π is chosen randomly from G.

It is well-known that there exist small families of k-wise independent hash functions (cf. [Vad04]).

Fact A.2 For all integer k, `, and n, there exists a family of k-wise independent hash functions
G : {π : {0, 1}n → {0, 1}`} such that choosing a random function from G requires k ·max{n, `}
random bits. Furthermore, choosing and evaluating each π ∈ G can be done in time polynomial
in k,`, and n.
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Theorem A.3 Let C be a concept class evolvable by N = (R,Neigh, µ, t) over a set of distri-
butions D. There exists an evolutionary algorithm N ′ = (R′,Neigh′, µ′, t′) and a polynomial
w(n, 1/ε) such that: (i) R′ contains only Boolean functions, and (ii) if for every point x and
distribution D ∈ D, D(x) ≤ 1/w(n, 1/ε) then C is evolvable by N ′ over D to accuracy ε.

Proof: Without loss of generality we can assume that N is an evolutionary algorithm produced
by the construction presented in Section 4. Let g(n, 2/ε) be the number of generations sufficient
to evolve C over D by N to accuracy and tolerance ε/2 and let τ ′ > 0 be the tolerance in
estimations of performance sufficient for the correct execution of N (see proof of Cl. 4.1 for
more details). For every representation r ∈ R computing a function φ(x), we create a Boolean
function ψ(x) that behaves like Φ(x), the random Boolean variable with expectation φ(x) for
every x. That is, ψ(x) allows to estimate the performance of Φ(x) which, by definition, equals
the performance of φ(x).

Let s(n, 1/ε) be the sample of size sufficient to estimate a random {−1, 1}-valued variable
within τ ′ with probability 1 − δ. Chernoff’s and Hoeffding’s bounds imply that s(n, 1/ε) =
c0τ

′−2 · log (1/δ) for a constant c0 will suffice [Che52, Hoe63]. We set δ to be small enough to
ensure that all pN (n, 2/ε) ·g(n, 2/ε) = 3 ·g(n, 2/ε) evaluations of performance are successful with
probability at least 1− ε/4.

The probability that a point x appears twice in a sample of size s is at most s(s−1)
2 D2(x).

Let w(n, 1/ε) = 6 · s2(n, 1/ε) · g(n, 2/ε)/ε. If for all x, D(x) ≤ 1/w(n, 1/ε) then the probability
that there exists a point that appears twice in a sample of size s(n, 1/ε) is at most

∑

x∈{0,1}n

s(s− 1)
2

D2(x) ≤
∑

x∈{0,1}n

s(s− 1)
2w

D(x) ≤ ε

12 · g
∑

x∈{0,1}n

D(x) =
ε

12 · g .

This condition implies that, with probability at least 1− ε/4, no point will occur twice in any of
at most 3 · g(n, 2/ε) samples of size s generated during all empirical evaluations of performance.

For r ∈ R, let φr(x) denote the (possibly real-valued) function computed by r and let Φr(x)
be the equivalent randomized Boolean function. To simulate Φr(x) one needs to produce 1
with probability (1 + φr(x))/2, and −1 otherwise. Given ` random coin flips this can be done
approximately by comparing the number whose binary representation is a random z ∈ {0, 1}`

to 2`(1 + φr(x))/2 and outputting 1 if the number is smaller or equal to 2`(1 + φr(x))/2. We
denote the function thus defined by Compare(φr(x), z). This method is not precise but the
statistical difference between Φr(x) and Compare(φr(x), z) for a randomly chosen z ∈ {0, 1}` is
at most 2−`. For large enough ` (e.g. ω(log n

ε )) this difference will not be detectable by samples
of polynomial size.

Now let G be an s-wise independent family of hash functions from {0, 1}n to {0, 1}`. Let π
be a randomly chosen function from G and let Ψr(x) = Compare(φr(x), π(x)). The properties
of G imply that evaluation of Perff (Ψr(x), D, s) on s distinct points is equivalent to evaluation
of the performance of Compare(φr(x), z) with randomly and uniformly chosen z’s and hence
is within 2−` of the evaluation of Φr(x) on the same points. By the choice of s(n, 1/ε) and
properties of D, with probability at least 1 − ε/2, |Perff (Ψr(x), D, s) − Perff (φr(x), D)| ≤ τ ′

as required for the analysis of N .
Therefore N ′ can obtained by replacing φr(x) with Ψr(x) for every r ∈ R. To obtain the

s · max{n, `} random bits required to choose a random and uniform π we use the same coin-
flipping stage as in the proof of Theorem 1.1. A minor obstacle to this approach arises from the
use of functions that compute 0 in the representations that generate the random coins. This
function is itself not Boolean. It is easy to see that any fixed Boolean function with performance
equal to zero (or negligible) for every f ∈ C and D ∈ D would work. Such functions are usually
easy to find for a specific C evolvable over a specific D. Alternatively, one can use representations
computing identity 1 (i.e. ≡ 1) to generate the random coins and then, given π, evolve to rσ
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using a sequence of gradually changing representations as in re-initialization (Th. 4.8). In either
case the re-initialization sequences would also need to be gradually evolving into the new initial
representation instead of rσ. ¤

Our reduction to Boolean functions relies on the assumption that the target distribution
does not have “heavy” points. However, learning the values of the unknown function on “heavy”
points is easy. One only needs to compare the correlation of the unknown function with two
functions that differ on a “heavy” point. More formally, for a fixed distribution D, let WD

denote the set of points such that D(x) ≥ 1/w(n, 1/ε) where w is as defined in the proof of
Theorem A.3. This set has size at most w(n, 1/ε). For a p-samplable distribution D, it can be
computed by a randomized algorithm in time polynomial in w (and the inverse of the desired
accuracy). For a general distribution D, we can assume that such WD is given as advice. Let
y1, y2, . . . , yw be some fixed ordering of the points in WD. The goal of the evolutionary algorithm
is to discover the values of the target on each of the points in WD. For z ∈ {0, 1}∗ of length
k ≤ w, let r1

z denote the representation that computes the function equal 1 on all points but the
set {yi|i ∈ [k], zi = 0}. For every representation r1

z , our algorithm has representations r1
z1 and

r1
z0 in the neighborhood of r1

z and tolerance equals 1/w. This ensures that when the algorithm
reaches r1

z for z of length w from r1
σ, z contains the values of the target on all the point in

WD. From that point we can evolve C on the points outside of WD using our transformation
for unconcentrated distributions. The functions computed by all representation following r1

z are
fixed to be the same as r1

z on points in WD. The re-initialization sequences of representations
also need to evolve to r1

σ. This argument implies the following lemma.

Lemma A.4 Let C be a concept class evolvable over an ensemble of distributions D = {Dn}∞n=1.
There exist an evolutionary algorithm N such that C is evolvable by N over D and N uses only
representations computing Boolean functions. Here if D is not p-samplable then N is non-
uniform.
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