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1 PROBLEM DEFINITION

The problem deals with learning to classify from random labeled examples in Valiant’s PAC model
[Val84]. In the random classification noise model of Angluin and Laird [AL88] the label of each
example given to the learning algorithm is flipped randomly and independently with some fixed
probability η called the noise rate. Robustness to such benign form of noise is an important goal
in the design of learning algorithms. Kearns defined a powerful and convenient framework for
constructing noise-tolerant algorithms based on statistical queries. Statistical query (SQ) learning
is a natural restriction of PAC learning that models algorithms that use statistical properties of a
data set rather than individual examples. Kearns demonstrated that any learning algorithm that is
based on statistical queries can be automatically converted to a learning algorithm in the presence
of random classification noise of arbitrary rate smaller than the information-theoretic barrier of 1/2.
This result was used to give the first noise-tolerant algorithm for a number of important learning
problems. In fact, virtually all known noise-tolerant PAC algorithms were either obtained from SQ
algorithms or can be easily cast into the SQ model.

In subsequent work the model of Kearns has been extended to other settings and found a number
of additional applications in machine learning and theoretical computer science.

1.1 Definitions and Notation

Let C be a class of {−1,+1}-valued functions (also called concepts) over an input space X. In the
basic PAC model a learning algorithm is given examples of an unknown function f from C on points
randomly chosen from some unknown distribution D over X and should produce a hypothesis h that
approximates f . More formally, an example oracle EX(f,D) is an oracle that upon being invoked
returns an example 〈x, f(x)〉, where x is chosen randomly with respect to D, independently of any
previous examples. A learning algorithm for C is an algorithm that for every ε > 0, δ > 0, f ∈ C,
and distribution D over X, given ε, δ, and access to EX(f,D) outputs, with probability at least
1 − δ, a hypothesis h that ε-approximates f with respect to D (i.e. PrD[f(x) 6= h(x)] ≤ ε). We
denote this distribution over labeled examples by Df . Efficient learning algorithms are algorithms
that run in time polynomial in 1/ε, 1/δ, and the size of the learning problem s. The size of a
learning problem is determined by the description length of f under some fixed representation

1



scheme for functions in C and the description length of an element in X (often proportional to the
dimension n of the input space).

A number of variants of this basic framework are commonly considered. The basic PAC model is
also referred to as distribution-independent learning to distinguish it from distribution-specific PAC
learning in which the learning algorithm is required to learn with respect to a single distribution D
known in advance. A weak learning algorithm is a learning algorithm that can produce a hypothesis
whose error on the target concept is noticeably less than 1/2 (and not necessarily any ε > 0).
More precisely, a weak learning algorithm produces a hypothesis h such that PrD[f(x) 6= h(x)] ≤
1/2 − 1/p(s) for some fixed polynomial p. The basic PAC model is often referred to as strong
learning in this context.

In the random classification noise model EX(f,D) is replaced by a faulty oracle EXη(f,D),
where η is the noise rate. When queried, this oracle returns a noisy example 〈x, b〉 where b = f(x)
with probability 1 − η and ¬f(x) with probability η independently of previous examples. When
η approaches 1/2 the label of the corrupted example approaches the result of a random coin flip,
and therefore the running time of learning algorithms in this model is allowed to depend on 1

1−2η
(the dependence must be polynomial for the algorithm to be considered efficient). For simplicity
one usually assumes that η is known to the learning algorithm. This assumption can be removed
using a simple technique of Laird [Lai88].

To formalize the idea of learning from statistical properties of a large number of examples,
Kearns introduced a new oracle STAT(Df , τ) that replaces EX(f,D), where τ ∈ [0, 1] is the tolerance
parameter. The oracle STAT(Df , τ) takes as input a statistical query (SQ) defined by a real-valued
function φ : X × {−1,+1} → [−1, 1] on labeled examples. Given such a query the oracle responds
with an estimate v of E(x,y)∼Df

[φ(x, y)] that is accurate to within an additive ±τ .
Note that the oracle does not guarantee anything else on the value v beyond |v−EDf

[φ(x, y)]| ≤
τ and an SQ learning algorithm needs to work with any possible implementation of the oracle.
However, SQ oracle is known to be equivalent (up to polynomial factors) to a 1-bit- per-sample
oracle which to a call with Boolean function φ returns the value of φ(x, f(x)), where x is chosen
randomly and independently according to D [BD98]. Such oracle can be used to get an estimate
of EDf

[φ(x, y)] that is distributed in in the same way as an estimate based on fresh samples.
Chernoff-Hoeffding bounds easily imply that for a single query, STAT(Df , τ) can, with high

probability, be simulated using EX(f,D) by estimating EDf
[φ(x, y)] on O(τ−2) examples. Therefore

the SQ model is a restriction of the PAC model. Efficient SQ algorithms allow only efficiently
evaluatable φ’s and impose an inverse polynomial lower bound on the tolerance parameter over
all oracle calls. Kearns also observes that in order to simulate all the statistical queries used by
an algorithm one does not necessarily need new examples for each estimation. Instead, assuming
that the set of possible queries of the algorithm has Vapnik-Chervonenkis dimension d, all its
statistical queries can be simulated using Õ(dτ−2(1− 2η)−2 log (1/δ)) examples [Kea98]. Without
such assumptions, the best upper bounds on the number of samples sufficient to answer multiple
statistical queries were recently given in [DFH+14, BNS+16].

Further, to make the correspondence between the number of samples n and the accuracy of
the estimate more precise, Feldman et al. [FGR+12] introduced a strengthening of the SQ oracle
that incorporates the variance of the random variable φ(x, y) into the estimate. More formally,
given as input any function φ : X × {−1,+1} → [0, 1], VSTAT(Df , n) returns a value v such that

|v − p| ≤ max

{
1
n ,

√
p(1−p)
n

}
, where p = EDf

[φ]. Note that p(1−p)
n is the variance of the empirical
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mean when φ is Boolean. More generally, the oracle can be used to estimate of the expectation
EDf

[φ] for any real-valued function φ within Õ(σ/
√
n), where σ is the standard deviation of φ(x)

[Fel16a].
A natural generalization of the SQ oracle that provides an estimate of the expectation of any

function of k examples: φ : (X × {−1,+1})k → [−1, 1] was defined and studied by Blum et al.
[BKW03]. Additional upper and lower bound on the power of this oracle are given in [FG17].

2 KEY RESULTS

2.1 Statistical Queries and Noise-tolerance

The main result given by Kearns is a way to simulate statistical queries using noisy examples.

Lemma 1 ([Kea98]). Let φ be a statistical query such that φ can be evaluated on any input in time
T , τ > 0 and let EXη(f,D) be a noisy oracle. The value ED[φ(x, f(x))] can, with probability at
least 1 − δ, be estimated within τ using O(τ−2(1 − 2η)−2 log (1/δ)) examples from EXη(f,D) and
time O(τ−2(1− 2η)−2 log (1/δ) · T ).

This simulation is based on estimating several probabilities using examples from the noisy
oracle and then offsetting the effect of noise. The lemma implies that any efficient SQ algorithm
for a concept class C can be converted to an efficient learning algorithm for C tolerating random
classification noise of any rate η < 1/2.

Theorem 2 ([Kea98]). Let C be a concept class efficiently PAC learnable from statistical queries.
Then C is efficiently PAC learnable in the presence of random classification noise of rate η for any
η < 1/2.

Balcan and Feldman describe more general conditions on noise under which a specific SQ algo-
rithm can be simulated in the presence of noise [BF13].

2.2 Statistical Query Algorithms

Kearns showed that, despite the major restriction on the way an SQ algorithm accesses the exam-
ples, many PAC learning algorithms known at the time can be modified to use statistical queries
instead of random examples [Kea98]. Examples of learning algorithms for which he described an
SQ analogue and thereby obtained a noise-tolerant learning algorithm include:

• Learning decision trees of constant rank.

• Attribute-efficient algorithms for learning conjunctions.

• Learning axis-aligned rectangles over Rn.

• Learning AC0 (constant-depth unbounded fan-in) Boolean circuits over {0, 1}n with respect
to the uniform distribution in quasipolynomial time.

Subsequent works have provided numerous additional examples of algorithms used in theory
and practice of machine learning that can either be implemented using statistical queries or can
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be replaced by an alternative SQ-based algorithm of similar complexity, for example, the Percep-
tron algorithm and learning of linear threshold functions [BFKV97, DV04, BF15, FGV15], boos-
ting [AD98], attribute-efficient learning via the Winnow algorithm (cf. [Fel14]), k-means clustering
[BDMN05] and stochastic convex optimization [FGV15]. We note that many learning algorithms
rely only on evaluations of functions on random examples and therefore can be seen as using access
to the honest statistical query oracle. In such cases the SQ implementation follows immediately
from the equivalence of the Kearns’ SQ oracle and the honest one [FGR+12].

The only known example of a technique for which there is no SQ analogue is Gaussian elimi-
nation for solving linear equations over a finite field. This technique can be used to learn parity
functions that are not learnable using SQs (as we discuss below) and, more generally, affine sub-
spaces over finite fields. As a result, with the exception of affine subspace learning problem (e.g.
[Fel16b]), known bounds on the complexity of learning from random examples are, up to polynomial
factors, the same as known bound for learning with statistical queries.

2.3 Statistical Query Dimension

The restricted way in which SQ algorithms use examples makes it simpler to understand the
limitations of efficient learning in this model. A long-standing open problem in learning theory
is learning of the concept class of all parity functions over {0, 1}n with noise (a parity function
is a XOR of some subset of n Boolean inputs). Kearns has demonstrated that parities cannot be
efficiently learned using statistical queries even under the uniform distribution over {0, 1}n [Kea98].
This hardness result is unconditional in the sense that it does not rely on any unproven complexity
assumptions.

The technique of Kearns was generalized by Blum et al. who proved that efficient SQ learnability
of a concept class C is characterized by a relatively simple combinatorial parameter of C called the
statistical query dimension [BFJ+94]. The quantity they defined measures the maximum number of
“nearly uncorrelated” functions in a concept class. (The definition and the results were simplified
and strengthened in subsequent works [Szo09, FGR+12], and we use the improved statements here.)
More formally,

Definition 3. For a concept class C and distribution D, the statistical query dimension of C with
respect to D, denoted SQ-DIM(C,D), is the largest number d such that C contains d functions
f1, f2, . . . , fd such that for all i 6= j, |ED[fi · fj ]| ≤ 1

d .

Blum et al. relate the SQ dimension to learning in the SQ model as follows.

Theorem 4 ([BFJ+94, FGR+12]). Let C be a concept class and D be a distribution such that
SQ-DIM(C,D) = d.

• If all queries are made with tolerance of at least 1/d1/3, then at least d1/3 − 2 queries are
required to learn C with error 1/2− 1/(2d3) in the SQ model.

• There exists an algorithm for learning C with respect to D that makes d fixed queries, each of
tolerance 1/(4d), and finds a hypothesis with error at most 1/2− 1/(2d).

Thus SQ-DIM characterizes weak SQ learnability relative to a fixed distribution D up to a
polynomial factor. Parity functions are uncorrelated with respect to the uniform distribution, and
therefore any concept class that contains a superpolynomial number of parity functions cannot be
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learned by statistical queries with respect to the uniform distribution. This, for example, includes
such important concept classes as k-juntas over {0, 1}n (or functions that depend on at most k
input variables) for k = ω(1) and decision trees of superconstant size.

Simon showed that (strong) PAC learning relative to a fixed distribution D using SQs can also
be characterized by a more general and involved dimension [Sim07]. Simpler and tighter charac-
terizations of distribution-specific PAC learning using SQs have been demonstrated by Feldman
[Fel12] and Szörényi [Szo09]. Feldman also extended the characterization to the agnostic learning
model [Fel12]. More recently a notion of SQ dimension that characterizes distribution-independent
learning and other problems was given in [Fel16b].

Despite characterizing the number of queries of certain tolerance, the SQ-DIM and its genera-
lizations capture surprisingly well the computational complexity of SQ learning of most concept
classes. One reason for this is that if a concept class has polynomial SQ-DIM then it can be lear-
ned by a polynomial-time algorithm with advice also referred to as a “non-uniform” algorithm (cf.
[FK12]). However it was shown by Feldman and Kanade that for strong PAC learning there exist
artificial problems whose computational complexity is larger than their statistical query complexity
[FK12].

Applications of these characterizations to proving lower bounds on SQ algorithms can be found
in [KS07, Fel12, FLS11, DSFT+14]. Relationships of SQ-DIM to other notions of complexity of
concept classes were investigated in [She08, KS11].

3 APPLICATIONS

The restricted way in which an SQ algorithm uses data implies that it can be used to obtain learning
algorithms with additional useful properties. For example, SQ learning algorithms can be easily
converted to algorithms for learning from positive and unlabeled examples [Den98, DGL05] and
learning algorithms from multiple-instance examples [BK98]. Blum et al. [BDMN05] show that an
SQ algorithm can be used to obtain a differentially private [DMNS06] algorithm for the problem. In
fact, SQ algorithms are equivalent to local (or randomized-response) differentially private algorithms
[KLN+11]. Chu et al. [CKL+06] show that SQ algorithms can be automatically parallelized on
multicore architectures and give many examples of popular machine learning algorithms that can
be sped up using this approach. Steinhardt et al. show how to obtain learning algorithms in the
streaming setting with limited memory from SQ algorithms and derive new algorithms for sparse
regression from this reduction [SVW16, Fel16b].

The SQ model of learning was generalized to active learning (or learning where labels are
requested only for some of the points) and used to obtain new efficient noise-tolerant active learning
algorithms [BF13].

The SQ learning model has also been instrumental in understanding Valiant’s model of evolution
as learning [Val09]. Feldman showed that the model is equivalent to learning with a restricted
form of SQs referred to as correlational SQs [Fel08]. A correlational SQ is a query of the form
φ(x, y) = g(x) · y for some g : X → [−1, 1]. Such queries were first studied by Ben-David et al.
[BDIK90] (remarkably, before the introduction of the SQ model itself) and distribution-specific
learning with such queries is equivalent to learning with (unrestricted) SQs. The correspondence
between evolvability and SQ algorithms has been used in a number of subsequent works [Fel09,
Fel12, KVV10, Kan11, Val12] on evolvability.

Statistical query-based access can naturally be defined for any problem where the input is a
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set of i.i.d. samples from some distribution over the domain of the problem (and not just labeled
examples). Feldman et al. show that lower bounds based on SQ-DIM can be extended to this more
general setting and give examples of applications [FGR+12, FPV13]. A general statistical dimension
that characterizes the statistical query complexity of an arbitrary problem over distributions is
described in [Fel16b].

4 OPEN PROBLEMS

The main questions related to learning with random classification noise are still open. Is every
concept class efficiently learnable in the PAC model also learnable in the presence of random clas-
sification noise? Is every concept class efficiently learnable in the presence of random classification
noise of arbitrarily high rate (less than 1/2) also efficiently learnable using statistical queries? A
partial answer to this question was provided by Blum et al. who show that Gaussian elimination
can be used in low dimension to obtain a class learnable with random classification noise of constant
rate η < 1/2 but not learnable using SQs [BKW03]. For both questions a central issue seems to be
obtaining a better understanding of the complexity of learning parities with noise.

The complexity of learning from statistical queries remains an active area of research with
many open problems. For example, there is currently an exponential gap between known lower
and upper bounds on the complexity of distribution-independent SQ learning of polynomial-size
DNF formulae and AC0 circuits (cf. [She08]). Several additional open problems on complexity of
SQ learning can be found in [FLS11, KS11, Fel14].
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