
Provenance-based Dictionary Refinement in
Information Extraction

Sudeepa Roy
∗

University of Washington
sudeepa@cs.washington.edu

Laura Chiticariu
IBM Research-Almaden
chiti@us.ibm.com

Vitaly Feldman
IBM Research-Almaden

vitaly@post.harvard.edu

Frederick R. Reiss
IBM Research-Almaden
frreiss@us.ibm.com

Huaiyu Zhu
IBM Research-Almaden
huaiyu@us.ibm.com

ABSTRACT
Dictionaries of terms and phrases (e.g. common person or orga-
nization names) are integral to information extraction systems that
extract structured information from unstructured text. Using noisy
or unrefined dictionaries may lead to many incorrect results even
when highly precise and sophisticated extraction rules are used. In
general, the results of the system are dependent on dictionary en-
tries in arbitrary complex ways, and removal of a set of entries can
remove both correct and incorrect results. Further, any such refine-
ment critically requires laborious manual labeling of the results.

In this paper, we study the dictionary refinement problem and
address the above challenges. Using provenance of the outputs in
terms of the dictionary entries, we formalize an optimization prob-
lem of maximizing the quality of the system with respect to the
refined dictionaries, study complexity of this problem, and give ef-
ficient algorithms. We also propose solutions to address incomplete
labeling of the results where we estimate the missing labels assum-
ing a statistical model. We conclude with a detailed experimen-
tal evaluation using several real-world extractors and competition
datasets to validate our solutions. Beyond information extraction,
our provenance-based techniques and solutions may find applica-
tions in view-maintenance in general relational settings.

Categories and Subject Descriptors
H.0 [Information Systems]: General; I.7.0 [Computing Method-
ologies]: Document and Text Processing—General

Keywords
Information Extraction, F-score, Provenance, Optimization

1. INTRODUCTION
Information Extraction, the problem of extracting structured in-

formation from unstructured text, is an essential component of many

∗This work was done while the author was at the University of
Pennsylvania and IBM Research-Almaden.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

important applications including business intelligence, social me-
dia analytics, semantic search and regulatory compliance. The suc-
cess of these applications is tightly connected with the quality of
the extracted results, as incorrect or missing results may often ren-
der the application useless. Most information extraction systems
use a set of rules, a number of dictionaries of terms and phrases
(also known as gazetteers or lists) along with other basic features
like syntactic features (e.g. regular expressions) and morphological
features (e.g. part of speech) to identify common patterns in text;
these are subsequently used to extract entities (e.g. Person, Organi-
zation, Location) and relations between entities (e.g. Person’s birth
date or phone number) from the text.

Developing and maintaining high-quality entity or relation ex-
tractors is an extremely laborious process. Typically, a developer
starts by collecting an initial set of features and developing an ini-
tial set of rules. She then executes the extractor on a document
collection, labels some of the results as correct (or, a true positive)
and incorrect (or, a false positive), examines the causes of incorrect
results, and refines the extractor in order to remove these incorrect
results. This process is repeated until the developer is satisfied with
the quality of the extractor. In this paper, we investigate in detail
one of the most important parts of this process, that of refining dic-
tionaries by suggesting to the human supervisor of the system a list
of entries whose removal from the dictionaries will remove many
false positives in the output without removing too many true pos-
itives. The supervisor may then decide to either: (1) delete these
dictionary entries altogether, or (2) list them as ambiguous entries
and move them to other dictionaries, or (3) update the rules in order
to handle these entries appropriately.

Dictionaries are integral to information extraction systems [10,
9, 22]. For example, a Person extractor would make use of dictio-
naries of complete names (e.g. names of famous persons), as well
as dictionaries of common first names and last names, and dictio-
naries of common titles (e.g. “Mr.”, “Esq.”). More sophisticated
Person extractors may use a larger collection of more fine-grained
dictionaries to improve accuracy (e.g. a dictionary of common first
names that are also the names of major U.S. corporations). Dic-
tionaries are even more relevant in the context of today’s informal
data sources (e.g. social media), which do not obey the constraints
of formal language: syntactic features such as capitalization and
punctuation are rarely present, and classic part of speech analyzers
trained on formal text such as TreeBank have low accuracy [27].

Although many dictionaries are readily available from public or
commercial sources, (e.g. the U.S. Census Bureau [1] provides ex-
tensive lists of first and last names, while [2] provides lists of loca-
tions containing millions of entries with detailed geographical in-
formation), inherent ambiguity in language prevents such exhaus-

tive dictionaries from being consumed directly, as they would lead
to many false positives. Instead, these dictionaries require curation
before they can be used effectively in an extractor, and the extent
of the curation depends on the application, domain and language.
For example, it has been observed that an extensive dictionary of
location names is useful, whereas an extensive dictionary of per-
son/organization names is not that effective [30, 21]. Dictionary
entries are often collected from noisy sources [24, 31], or, gener-
ated automatically by a previous step of information extraction [33,
22]. One may frequently encounter in dictionaries of person names
ambiguous entries such as “San”, “Francisco”, “Hong”, “Kong”,
“April”, “Costa” that mostly produce false positives. These entries
must be either removed or treated differently in order to improve
the quality of the system.

In addition to refining noisy dictionaries, it is important to derive
dictionaries with high precision tailored to a particular domain of
interest by refining more general dictionaries. For instance, there
may be inherent overlap between dictionaries for different entities
(“Chelsea” is a common first name, but also the name of a famous
football club; “Victoria” or “Washington” can be a location or a
person). While including “Chelsea” in a dictionary of names may
work well in general, when the system is customized to process a
corpus of sports news articles, we need to add a rule that can dis-
ambiguate “Chelsea”. For example, the supervisor may decide to
remove “Chelsea” from the dictionary of first names, and at the
same time add “Chelsea” to a new dictionary of ambiguous names,
along with a new rule that marks occurrences of ambiguous names
as candidate persons only if another strong contextual (e.g., a ti-
tle) clue is present in the nearby text. However, prior to adding
the new rule, one must first determine the ambiguous entries in the
dictionary. In practice, the decision whether to refine dictionar-
ies or to add more sophisticated rules to directly handle all possi-
ble scenarios is usually carefully drawn on a case by case basis,
by considering not only the overall improvement in accuracy, but
also the ease of maintainability of the resulting extractor. Maintain-
ing complex rules in general is a labor intensive process requiring
expertise in the system’s rule language. Building high precision
dictionaries, especially for domain-specific applications, provides
a low-overhead option requiring little or no knowledge of the sys-
tem, and helps create, maintain and update extractor rules to further
improve the quality of the system [26, 9, 17, 28].

To refine a dictionary, the system’s supervisor would wish to ex-
amine a list of entries whose removal would lead to a significant
improvement of the system by removing many false positives. This
raises two technical challenges. First, a realistic extractor usually
uses a number of dictionaries that are combined via complex rules.
An output is determined by alternative or joint uses of multiple dic-
tionary entries, and their arbitrary combinations. Therefore, when
an entry is removed, some of the correct and incorrect results it has
produced may get deleted and some may be retained depending on
the other entries being removed. We need to consider the actual
connection between dictionary entries and output results while re-
fining the dictionaries. Second, labeling the outputs of extractors
(as true and false positives) is a laborious task requiring substan-
tial human effort. In addition, dictionaries frequently contain thou-
sands of entries, therefore information about individual entries is
sparse even when a large amount of labeled data is available. Nev-
ertheless, one should ensure that the refined dictionaries perform
well with respect to unlabeled data.
Our contribution. We systematically study the dictionary refine-
ment problem in this paper. Note that in a Person extractor, if the
entry “Chelsea” produces 15 true positives and 15 false positives,
while “April” produces only 1 true positive and 5 false positives,

it is not obvious which of these two entries should be removed
first. Therefore, to balance the requirements of extraction preci-
sion (minimize false positives) and recall (avoid discarding correct
answers), we maximize the standard objective of F-score (the har-
monic mean of precision and recall) [38]. We study this maximiza-
tion problem under two natural constraints that a human supervisor
is likely to use: a limit on the number of dictionary entries to re-
move (size constraints), and the maximum allowable decrease in
recall (recall constraints). The complex connection between dic-
tionary entries and output results is captured using provenance of
the results in terms of the entries as a boolean expression (which
we call provenance polynomials) [19]. These polynomials are used
to find the results that are deleted when a set of entries is removed.

To handle incomplete labeling of the results, we divide the dic-
tionary refinement problem into two sub-problems: (a) Label es-
timation estimates the “fractional” labels of the unlabeled results
assuming a statistical model for the labels. (b) Refinement opti-
mization takes the (exact or estimated) labels of the results as in-
put, and outputs a set of dictionary entries to remove in order to
maximize the resulting F-score under size or recall constraint.

1. For label estimation, we give a method based on the well-
known Expectation - Maximization (EM) algorithm [14]. Un-
der our statistical model, we show that there is a closed-form
expression for the update rules in EM for our application
which can be efficiently evaluated.

2. To understand the complexity of the refinement optimiza-
tion problem, we start with an important special case, called
single argument rules (or, simple rules), where a unique dic-
tionary entry is responsible for producing each output result.
Then we move on to the case of general multiple arguments
rules (or, complex rules). Besides serving as a stepping stone
for complex rules, the case of simple rules has several prac-
tical applications including the initial refinement of a noisy
dictionary generated from various sources, and the curation
of specialized high-precision dictionaries (such as lists of or-
ganizations in healthcare and banking).

The complex objective function of maximizing the F-score
makes the refinement optimization step non-trivial even for
simple rules, and even when the entire set of results is la-
beled. However, we give a poly-time optimal algorithm for
simple rules under size constraints. The problem becomes
NP-hard under recall constraints even for simple rules. Nev-
ertheless, we show that an efficient near-optimal algorithm
exists. In addition, we show that the estimated labels reduce
to empirical estimates for simple rules, and therefore the la-
bel estimation step can be skipped in this case. For complex
rules, the optimization problem is NP-hard even under size
constraints and we propose efficient heuristics.

3. We conduct an extensive set of experiments on several real-
world information extraction rule-sets and competition datasets
that validate the effectiveness of our techniques. The com-
plexity of the extractor rules varies from one rule (for the
simple rule case) to a highly refined extractor using over 400
rules (for the complex rule case). This demonstrates that our
techniques are useful for both doing the initial refinement of
a noisy dictionary and also to further improve the quality of
an extractor that uses a sophisticated rule set.

Beyond information extraction, our approach has applicability
in view maintenance in general relational settings. Our model
and theoretical results can be used to refine erroneous source tuples

in order to reduce the number of false positives in the output view
without removing too many true positives (see Section 2).
Roadmap. We start with related work and preliminaries (Sec-
tions 2 and 3), and formalize the dictionary refinement problem in
Section 4. Sections 5 and 6 present our technical contributions on
estimation of labels for unlabeled results, and respectively, refine-
ment optimization for simple and complex rules. We discuss our
experimental results in Section 7 and conclude with directions for
future work in Section 8.

2. RELATED WORK
Previous work on entity extraction from lists on the web (e.g.

[15]), open information extraction (e.g. [4, 39]) and dictionary learn-
ing (e.g. [33]) addresses the problem of creating new dictionaries
of terms from unstructured or semi-structured data sources by ex-
ploiting contextual patterns or the structure of web pages. Our work
is complementary to these approaches, and can be used to further
refine such automatically generated dictionaries. Our work is also
orthogonal to Named Entity Disambiguation techniques (e.g. [20]),
which, given an external catalog of entities, aim to associate an ex-
tracted named entity with an actual entity in the catalog. The goal
of our techniques for complex rules is to find out entries that pro-
duce many false positives during the extraction process, so that the
human supervisor can either remove them or update the rules. Our
techniques are applicable not only to Named Entity Recognition
tasks, but also other common tasks such as relationship or senti-
ment extraction; furthermore, they can be applied when the appli-
cation cannot make use of an external catalog, for example due to
license limitations or when speed of execution is critical.

Approaches for refining rule-based information extraction pro-
grams have been recently proposed in [34, 7, 26]. Shen et al. [34]
propose an approach for refining rules by posing a series of tem-
plate questions to the user, where each question asks for additional
information about a specific (predefined) feature of the desired ex-
tracted data, whereas Chai et al. [7] allow users to update any (in-
correct) intermediate result derived by the system and proposes
techniques for incorporating these updates during program execu-
tion. In contrast, we develop techniques to automatically compute
a (small) set of dictionary entries, therefore allowing the user to
focus on a (small) set of base tuples whose removal results in high-
est quality improvements for the extractor. Liu et al. [26] proposed
a provenance-based framework for refining information extraction
rules. They showed how to use provenance to compute high-level
changes, a specific intermediate result whose removal from the out-
put of an operator causes the removal of a false positive from the
result, and how multiple high-level changes can be realized via a
low-level change: a concrete change to the operator that removes
one or more intermediate results from the output of the operator.
In this paper, we do rigorous theoretical analysis of one specific
and important type of low-level change, that of refining dictionar-
ies used in an extractor, especially in the presence of incomplete
labeled data, which is an aspect not considered in [26].

Also related are recent studies on causality [29] and deletion
propagation [6, 23] in general relational setting. In [29], the input
consists of source tuples, an output boolean vector and a ground
truth boolean vector, and the goal is to compute the responsibil-
ity of every source tuple using modifications such that the output
is identical to the ground truth. In other words, the modifications
should remove all incorrect results, while keeping all correct re-
sults. On the other hand, [6, 23] study the problem of deleting
an incorrect answer tuple of an SPJU query while minimizing the
view-side-effect, i.e. the number of other answer tuples deleted. We
consider extractors consisting essentially of SPJU queries, where

match

t6: April Smith

match

t1: April

t2: Chelsea

t3: April

t4: Chelsea

text

t0: This April, mark your calendars for the last derby of
the season: Arsenal at Chelsea. April Smith reporting
live from Chelsea’s stadium.

Dictionary file first_names.dict: w1: chelsea, w2: john,
 w3: april…
Dictionary file last_names.dict: w4: smith,…
Dictionary file names.dict: w5: april smith, ,…

R1: create view FirstName as
 Dictionary(‘first_names.dict’, Document, text);

R2: create view LastName as
 Dictionary(‘last_names.dict’, Document, text);

R3: create view FullName as
 Dictionary(‘names.dict’, Document, text);

R4: create view FirstLast as
 select Merge(F.match, L.match) as match
 from FirstName F, LastName L
 where FollowsTok(F.match, L.match, 0, 0);

R5: --Create the output of the extractor
 create table Person(match span);

 insert into Person
 (select * from FullName A) union
 (select * from FirstLast A) union
 (select * from FirstName A where
 Not(MatchesRegex(‘[]*[A-Z].*’,
 RightContextTok(A.match, 1))));

Input document:
“This April, mark your calendars for the first derby of
the season: Arsenal at Chelsea. April Smith reporting
live from Chelsea’s stadium.”

Document:

FirstName: LastName:
match

t5: Smith

FullName:

match

t8: April

t9: Chelsea

t10: April Smith

t11: Chelsea

Person:

match

t7: April Smith

FirstLast:

Figure 1: Example extraction program, input document D, and
view instances created by the extraction program on D.

dictionary entries correspond to source tuples and extraction re-
sults correspond to outputs. As such, our work can be seen as an
alternative objective for these related problems that tries to balance
between the number of incorrect tuples retained and the number of
correct tuples deleted. To the best of our knowledge, ours is the
first formal study of dictionary refinement for information extrac-
tion with a well-defined objective of maximizing the F-score.

3. PRELIMINARIES
We illustrate the main components of a rule-based information

extraction system in Figure 1 using a simplified Person extrac-
tor. An information extraction system typically consists of a set
of rules (R1 to R5), and a set of dictionaries (“first_names.dict”,
“last_names.dict” and “names.dict”). Given one or a set of input
documents (often called a corpus), such a system extracts the enti-
ties or relations specified in the extractor (view instance Person in
Figure 1). In practice, the extractors are much more complex; one
of the extractors used in our experiments uses more than 400 rules.

Rule Language. We use the select-project-join-union (SPJU)
subset of SQL enriched with a number of basic extraction prim-
itives to express information extraction rules1. This subset ex-
presses a core set of functionality underlying most rule languages
in common use today [5, 12, 25, 32, 35], and therefore our work can
be easily applied to other rule languages. Specifically, we augment
SQL with the following basic information extraction primitives. To
model data values extracted from the input document we add a new
atomic data type called span. A span is an ordered pair 〈begin,end〉
that identifies the region of an input document between the begin
and end offsets. The input document is modeled as a table called
Document with a single attribute of type span named text. We
also add several predicates, scalar functions, and table functions to
SQL’s standard set of built-in functions as discussed below.

Example Rules. The program in Figure 1 consists of five rules
labeled R1 through R5. Rules R1 to R4 define logical views, while
R5 materializes a table of extraction results. Rules R1, R2 and R3
illustrate one of our text extraction additions to SQL: the Dictio-
nary table function, which identifies all occurrences of a given set
of terms specified as entries in a dictionary file. The dictionary files
used in R1 to R3 contain a list of common first names, a list of com-
mon last names, and respectively a list of common full names. The
three rules define three single-column views FirstName, LastName
and FullName containing one intermediate tuple for each dictio-
nary match in the document. We use wi to denote dictionary entries

1The complex extractor used in our experiments also contains set
difference operator (SQL minus) which we discuss in Section 7.1.

in order to distinguish them from their (possibly multiple) matches
in a document (e.g. w1 generates the intermediate tuples t2 and t4).

Rule R4 identifies pairs of first and last names that are 0 tokens
apart in the input document. The view definition uses two of the
scalar functions that we add to SQL: FollowsTok and Merge. The
FollowsTok function is used as a join predicate: it takes two spans
as arguments, along with a minimum and maximum character dis-
tance, and returns true if the spans are within the specified distance
of each other in the text. The Merge function takes as input a pair
of spans and returns the shortest span that completely covers both
input spans. (Merge is sensitive to the order of its input spans: if
the second span appears before the first, the result of is undefined.)
The select clause of R4 uses Merge to define a span that extends
from the beginning of each first name to the end of the last name.

Finally, rule R5 materializes the table Person, which constitutes
the output of our extractor. It uses a union clause to union together
candidate name spans identified by rules R3 and R4, as well as can-
didates identified by R1 that are not immediately followed by a cap-
italized word. Note the where clause of the last union operand of R5
which uses two other additions to SQL: the RightContextTok func-
tion returns the span of a given length measured in tokens to the
right of the input span, while the MatchesRegex predicate returns
true if the text of the input span matches the given regular expres-
sion. In this case, the regular expression ‘[]*[A-Z].*’ identi-
fies a sequence of zero or more whitespaces, followed by an upper-
case letter, followed by zero or more occurrences of any character.

Provenance of results in terms of dictionary entries. Follow-
ing the existing work on data provenance, we assume a canonical
algebraic representation of extraction rules as trees of operators.
For the select-from-where-union subset of the language, the canon-
ical representation is essentially the same as the representation of
corresponding SQL statements in terms of relational operators σ ,
π , ./ and ∪. When an extraction function such as Dictionary ap-
pears in the from clause of a select statement, we translate these
table functions to operators by the same names.

The canonical rule representation enables us to express the prove-
nance (or lineage) of extraction results. Provenance for database
queries has been intensely studied in recent years (see, e.g. [8]).
In this work, we use the notion of how-provenance to represent
how an extraction result has been generated by the rules. Specifi-
cally, using the semiring framework of [19] we can encode the how-
provenance of an output tuple t, denoted as Prv(t), that describes
how that output tuple has been derived from source or intermediate
tuples using joins (multiplication ·) and union (addition +) opera-
tions; e.g. Prv(t10) = t6+ t7 = t6+ t3 · t5, since Prv(t7) = t3 · t5. We
call Prv(t) the as provenance polynomial of t. We regard individ-
ual dictionary entries as the source of intermediate tuples generated
by the Dictionary operator and express the provenance of an output
tuple directly in terms of the entries that are responsible for generat-
ing that tuple. Since Prv(t3) =w3, Prv(t5) =w4 and Prv(t6) =w5,
we have that Prv(t10) = w5 +w3 ·w4.

Simple and Complex Rules. To understand the complexity of
the dictionary refinement problem, we classify the input extractors
as (1) single argument rules (or, simple rules), and (2) multiple ar-
guments rules (or, complex rules). Simple rules contain a single
extract dictionary statement involving single or multiple dictionar-
ies, whereas the extractor for complex rules can consist of a number
of arbitrary rules involving one or more dictionaries (like the exam-
ple in Figure 1). An example of a simple rule is
CREATE VIEW Person AS
EXTRACT DICTIONARY ’name_USA.dict’ and
‘name_German.dict’ ON D.text AS name
FROM DOCUMENT D; OUTPUT VIEW Person;

Here a unique dictionary entry is responsible for producing each
output result and the provenance polynomial of a result tuple t is
simply of the form Prv(t) = w. Besides being a fundamental spe-
cial case for complex rules, the case of simple rules is of indepen-
dent interest. Our solution for simple rules may be useful in initially
refining manually or automatically generated dictionaries that can
be used as basic features not only in rule-based, but also statistical
(machine learning) information extraction systems. Other applica-
tions include the curation of specialized high-precision dictionaries
(such as lists of organizations in healthcare and banking) and to
create and refine complex extractor rules.

Precision, Recall and F-score. We now explain the standard
measures for evaluating an extractor’s quality, given a labeled dataset
containing expected results for the extraction. With respect to the
labeled dataset, an extracted result is either a true positive (correct)
or a false positive (incorrect). The precision, or accuracy of the
extractor is defined as the fraction of true positives among the to-
tal number of extracted results. An extractor with high precision
outputs very few false positives. An expected mention that is not
identified by the extractor is called a missing result (false negative).
The recall, or coverage of the extractor is defined as the fraction of
true positives among the total number of expected results. An ex-
tractor with high recall misses very few expected results. Finally,
the standard F-score, also known as F1-score or F-measure [38],
combines precision and recall into a single measure computed as
the harmonic mean of precision and recall (2PR/(P+R)).

4. DICTIONARY REFINEMENT PROBLEM
Let E be an extractor and let A be the set of all dictionary entries

used by E (union of all dictionary). Given a set of documents D, E
produces a set of results, some of which are true positives (Good)
and some are false positives (Bad). When a set of entries S ⊆ A
is removed from A, it results in another extractor E ′, which on the
same set of documents D will produce a subset of the earlier results.
Let S̄ = A\S. Then the precision PS̄ and recall RS̄ of E ′ are:

PS̄ =
No. of Good results with S̄

No. of Good results + No. of Bad results (with S̄)
(1)

RS̄ =
No. of Good results with S̄
No. of Good results with A

(2)

It is not hard to see that the recall of E ′ will be at most that of
E (i.e. 1), whereas the precision and therefore the F-score of E ′

can be more or less than that of E depending on the set S. For
instance, in the output Person table of Figure 1, all results except
“April Smith” are Bad, therefore the initial precision, recall and F-
scores are 1

4 ,1 and 2
5 respectively. If the entry w1 = “Chelsea” is

removed from the dictionary first_names.dict, the recall will remain
the same, whereas the precision and F-score will improve to 1

2 and
2
3 respectively. The goal of the dictionary refinement problem is to
compute a subset S whose removal results in an extractor E ′ having
the maximum value of the F-score on D.

4.1 Estimating Labels of Results for Incom-
plete Labeling

Even computing the F-score of an extractor requires knowing
labels (Good/Bad) on the entire set of results, while often only a
small fraction of the results is labeled. One possible approach is
to ignore the unlabeled results altogether and try to maximize the
F-score using the labeled results alone. But this may lead to over-
fitting and the solution may not work well for the entire result set.
Estimating the labels empirically is a natural choice for simple rules
(where each result is uniquely determined by an entry). However,

the number of possible results may be very large for complex rules,
and very few or zero labels are likely to be available for each result.
This makes empirical estimates expensive as well as difficult. In
Section 5, we propose a statistical model and give algorithms to
estimate missing labels in the dataset.

4.2 Formal Problem Definition
We are given b dictionaries A1, . . . ,Ab and let n denote the total

number of entries in A=∪b
`=1A`. A result τ is produced by matches

of one or more dictionary entries combined by the rules in the ex-
tractor; all such dictionary entries w are said to be in provenance of
τ . How the entries produce τ is captured by the provenance polyno-
mial Prv(τ) of τ (see Section 3); for all such entries w we say that
w ∈ Prv(τ). Here every entry in A is treated as a unique boolean
variable, and Prv(τ) is a boolean expression on these variables.

For simple rules, every result τ produced by an entry w has
Prv(τ) = w; when w is deleted exactly those results get deleted.
However, for complex rules, some results τ such that w ∈ Prv(τ)
can disappear when w is deleted, while some results may survive.
In Figure 1, when w3 = “april” is deleted, the result t8 = “April” gets
deleted, but t10 = “April Smith” survives (although w3 ∈ Prv(t10) =
w5 +w3 ·w4). This illustrates the following observation:

OBSERVATION 1. When S ⊆ A is removed, a result τ disap-
pears from the result set if and only if its provenance polynomial
Prv(τ) evaluates to FALSE by an assignment of FALSE (resp. TRUE)
value to the variables corresponding to the entries in S (resp. A\S).

Let surv(S) denote the set of results that survive when a set
of entries S is deleted. For example, given three results τ1,τ2,τ3
with provenance polynomials uv,u+ v,uw+ uv respectively, when
S = {u} is deleted, the set surv(S) will only contain τ2. Let φ(τ)
denote the label for a result τ . When the entire result set is labeled,
φ(τ) = 1 if τ is Good, and, = 0 if τ is Bad. Then rewriting (1) and
(2), the “residual” precision (PS̄), recall (RS̄) and their harmonic
mean F-score (FS̄) when S is deleted respectively are

PS̄ =
∑τ∈surv(S) φ(τ)

|surv(S)|
, RS̄ =

∑τ∈surv(S) φ(τ)

∑τ φ(τ)
,

FS̄ =
2∑τ∈surv(S) φ(τ)

|surv(S)|+∑τ φ(τ)
(3)

For incomplete labeling, we extend the above definitions by allow-
ing fractional labels φ(τ), which intuitively denote the confidence
that the label of the result is Good.

The refinement of an extractor is commonly done with human
supervision. The supervisor may prefer to examine a small number
of entries at a time, or may want to ensure that not too many original
true positives are removed by the refinement. Therefore, we maxi-
mize the F-score under (1) Size constraint: Given an integer k≤ n,
find a subset S, that maximizes FS̄, where |S| ≤ k; and (2) Recall
constraint: Given a fraction ρ ≤ 1, find a subset S, that maximizes
FS̄, where the residual recall RS̄ ≥ ρ . We study these optimization
problems in Section 6. Note that both numerator and the denom-
inator of FS̄ depend on the set S being removed, which makes the
optimization and analysis non-trivial even for simple rules.

5. ESTIMATING LABELS
In this section we discuss our statistical data model and algorithms
to estimate the missing labels.

5.1 The Statistical Model
A possible approach to estimate the missing labels is to group

together the results with equal provenance (equivalent boolean ex-
pressions), and then estimate the labels empirically. The problem

with this approach is that it is expensive, and it is likely that very
few (if any) labels will be available for each result since the pos-
sible number of such expressions may be very large. At the same
time it is quite likely that the correctness of individual entries will
be similar across results with different provenance expressions. For
example, the candidate last name “‘Island”2 can produce more than
one Bad results like “Victoria Island” and “Baffin Island”, and “Is-
land” is a Bad match3 as a last name in both results.

We represent this intuition by defining the model in the follow-
ing way. We assume that each entry w has a fixed (and unknown)
entry-precision pw. For any given result τ such that w ∈ Prv(τ),
the match of w for τ is correct with probability pw and incorrect
with probability 1− pw independent of the other results and other
entries in Prv(τ). Further, we assume that the rules are correct, i.e.
the label of τ is Good if and only if Prv(τ) evaluates to 1 given
the correctness of the matches of individual entries (Good ≡ 1 and
Bad≡ 0). Next we discuss how we estimate the labels from the es-
timated entry-precisions, followed by our EM-based algorithm to
estimate the entry-precisions from the available labeled data.

5.2 Estimating Labels from Entry-Precisions
Under our statistical model, the label φ(τ) of a result τ can be

estimated by evaluating the probability of its provenance Prv(τ)
given pw-s for all entry w ∈ Prv(τ). Computing the probability of
any boolean expression φ given the probabilities of its constituent
variables is in general #P-hard [37], and, the classes of relational
algebra queries for which the probability can be efficiently com-
puted have been extensively studied (e.g., see [13]). However, the
provenance of the results involve a small number of variables (typ-
ically ≤ 10). So we compute φ(τ) given pw-s by an exhaustive
enumeration.

5.3 Estimating Entry-Precisions by EM
Here we estimate the values of entry-precisions pw given a set of

results τ along with their provenance Prv(τ) and labels. We use the
Expectation-Maximization (EM) algorithm to solve this problem.
The EM algorithm [14] is a widely-used technique for the maxi-
mum likelihood estimation of parameters of a probabilistic model
with hidden variables. This algorithm estimates the parameters iter-
atively either for a given number of steps or until some convergence
criteria are met.

First, we introduce some notation to present the update rules
of EM in terms of our problem. We index the entries arbitrar-
ily as w1, · · · ,wn. Each entry wi has an entry-precision pi = pwi .
There are N labeled results τ1, · · · ,τN . We assume that τ1, · · · ,τN
also denote the labels of the results φ(τ1), · · · ,φ(τN), so each τi is
boolean, where τi = 1 (resp. 0) if the label is Good (resp. Bad).
If wi ∈ Prv(τ j), we say that τ j ∈ Succ(wi). For simplicity of no-
tation, we assume that exactly b dictionary entries are involved in
the expression φ j = Prv(τ j) for each result τ j; our implementation
works for general cases. Hence each φ j takes b inputs y j1, · · · ,y jb
and produces τ j. Each y j` is boolean, where y j` = 1 (resp. 0) if the
match of dictionary entry corresponding to y j` is correct (resp. in-
correct) while producing the label for τ j. The entry corresponding
to y j` will be denoted by Prv j` ∈ {w1, · · · ,wn}.

To illustrate the notation, consider the “firstname-lastname” rule
R4 in Figure 1: the result is a person if it is a match from the dic-
tionary first_names.dict, followed by a match from last_name.dict.
In this example, b = 2 and for every result τ j, τ j = φ j(y j1,y j2) =

2“Island” is a last name (ref. http://names.whitepages.com/last /is-
land, http://www.surnamedb.com/Surname/Island) in USA.
3A match is the tuple in the intermediate relation extracted by the
Dictionary operator.

y j1y j2. For a Good result “April Smith”, τ j = 1, y j1 = 1 (for “April”),
and y j2 = 1 (for “Smith”), Prv j1 = “April” and Prv j2 = “Smith”.
For a Bad result “Victoria Island”, τ j = 0, y j1 = 1 (for “Victoria”),
and y j2 = 0 (for “Island”).

Parameters and hidden variables for EM. For our problem,
the vector of labels of the results~x = 〈τ1, · · · ,τN〉 are the observed
variables, the vector of vectors for the correctness of matches of in-
dividual entries for these results~~y = 〈y j`〉 j∈[1,N],`∈[1,b] are the hid-

den variables, and the vector of entry-precisions ~θ = {p1, · · · , pn}
is the vector of unknown parameters.

Update rules for EM. Let ~θ t be the parameter vector at iter-
ation t. The log-likelihood of the observed variables is q(~x;~θ) =
logP(~x|~θ) = ∑

N
j=1 logP(τi|~θ). The complete information for the

problem includes the observed variables ~x = 〈τ1, · · · ,τN〉 as well
as the hidden variables ~~y = 〈y j`〉 j∈[1,N],`∈[1,b]. The expected log-
likelihood of the complete information given the observed variables
~x and current parameter vector ~θ t is E[q(~x,~~y;~θ)|~x, ~θ t] = K (say).
In the E-step, we compute the value of K in terms of pi, i ∈ [1,n],
by using the current value of the parameters ~θ t In the M-step, we
maximize K w.r.t. parameter vector ~θ , by differentiating K w.r.t.
each pi and equating δK/δ pi to zero, to get the next guess of the
parameters ~θ t+1. We show that this gives a closed-form expression
for each pi which can be efficiently computed in each iteration of
EM. The complete derivation is given in Appendix B.

Estimation for simple rules. Here we prove a simplifying
observation which will be used in the next section:

OBSERVATION 2. For simple rules, the estimated entry-precision
using EM reduces to its empirical entry-precision. Further, EM
converges in a single step.

For simple rules, Prv(τ) = w, where the result τ is a result of an
entry w. (i.e. b = 1). Fix an arbitrary result τ j, j ∈ [1,N], and the
unique entry wi such that Prv j,1 = wi. Then, at any time step t and
for any values of the parameters ~θ t , cwi,τ j ,t = E[y j1|τ j, ~θ t] = τ j. In
other words, when the label of a result is given, whether or not the
corresponding entry is a correct match for this result can be exactly
inferred from the label of the result. Hence, the entry-precision pi

for any entry wi is pi =
C1

C1+C2
=

∑cwi ,τ j ,t

∑cwi ,τ j ,t+∑(1−cwi ,τ j ,t)
(the sums are

over all τ j such that τ j ∈ Succ(wi)) =
∑τ j

∑τ j+∑(1−τ j)
which equals

the fraction of Good results produces by wi, i.e. the empirical entry-
precision of wi. Further, the EM algorithm will converge in a single
step since this estimate is independent of the time-step t, and there-
fore label-estimation can be omitted altogether.

6. REFINEMENT OPTIMIZATION
Next we discuss the problem of maximizing the residual F-score

for simple and complex rules (resp. Sections 6.1 and 6.2). This step
takes the provenance polynomial and the (possibly fractional) label
of all results as input, and outputs a set of entries to be deleted.

6.1 Simple Rules
The following observation simplifies the expressions of preci-

sion, recall, and F-score for simple rules.

OBSERVATION 3. For simple rules, a result τ ∈surv(S) if and
only if the entry w /∈ S where w = Prv(τ).

Let us denote the frequency of an entry w (i.e., the number of results
τ such that Prv(τ) = w) by fw. Then |surv(S)| = ∑w/∈S fw, and
using Observation 2, ∑τ∈surv(S) φ(τ) = ∑w/∈S ∑τ:w=Prv(τ) φ(τ) =

Algorithm 1 Algorithm for size constraints (given k and ∆)

1: – Let θlow = FA and θhigh = 1
2: while θhigh−θlow > ∆ do
3: Let θ = (θhigh +θlow)/2 be the current guess.
4: Sort the entries w in descending order of fw(θ −2pw).
5: Let S be the top ` ≤ k entries in the sorted order such that

fw(θ −2pw)≥ 0 for all w ∈ S.
6: if ∑w∈S[fw(θ −2pw)]≥ ∑w∈A fw(θ − (2−θ)pw) then
7: θ is feasible, set θlow = FS̄ and continue.
8: else
9: θ is not feasible, set θhigh = θ and continue.

10: end if
11: end while
12: Output the set S used to define the most recent θlow.

∑w/∈S pw fw. Here pw is the (estimated) entry-precision of w.4 There-
fore, the expressions for PS̄,RS̄,FS̄ given in (3) reduce to:

PS̄ =
∑w/∈S pw fw

∑w/∈S fw
, RS̄ =

∑w/∈S pw fw
∑w∈A pw fw

, FS̄ = 2
∑w/∈S pw fw

∑w∈A pw fw +∑w/∈S fw

In Section 6.1.1, we give an optimal and efficient algorithm to
maximize the F-score under size constraints. For recall constraints,
in Section 6.1.2 we show that the exact optimization is NP-hard.
However, we give a simple and efficient algorithm that is provably
nearly optimal and works well in our tests.

6.1.1 Size Constraints
Our goal is to maximize FS̄ = 2 ∑w/∈S pw fw

∑w∈A pw fw+∑w/∈S fw
, where |S| ≤ k.

The main idea of our algorithm is that finding out whether there ex-
ists a dictionary with F-score of at least θ is a significantly simpler
problem which overcomes the non-linearity of the objective func-
tion [16]. Accordingly, our algorithm guesses a value θ and then
checks if θ is a feasible F-score for some S. The value of θ that
maximizes FS̄ is then found via a binary search.

Checking if θ is a feasible F-score. We need to check whether
there is a set S of entries such that FS̄ = 2 ∑w∈A pw fw−∑w∈S pw fw

∑w∈A pw fw+∑w∈A fw−∑w∈S fw
≥

θ , i.e., we need to find out whether there exists S such that

∑
w∈S

fw(θ −2pw)≥ ∑
w∈A

fw(θ − (2−θ)pw)

The right hand side of the inequality is independent of S, so it suf-
fices to select the top-most (at most) k entries with non-negative
value of fw(θ −2pw) and check if the sum is at least ∑w∈A fw(θ −
(2−θ)pw). Clearly we want a subset S such that FS̄ ≥ FA. Hence
the guess θ is varied between FA and 1. Algorithm 1 presents this
idea in terms of an accuracy parameter ∆; the value of ∆ for the
optimal F-score will be discussed later.

Running time. There is an O(n)-time algorithm for the feasi-
bility step 6: (i) Use the standard linear time selection algorithm to
find the k-th highest entry, say u, according to fw(θ−2pw), (ii) do a
linear scan to choose the entries w such that fw(θ −2pw)> fu(θ −
2pu), and choose entries such that fw(θ − 2pw) = fu(θ − 2pu) to
get k entries in total, (iii) discard the selected entries with nega-
tive values of fw(θ − 2pw) and output the remaining ≤ k entries.
However, we can have simpler implementations of the verification
step - using a min-heap gives O(n+k logn) time, and a simple sort-
ing gives O(n logn) time. Since values of the guesses are between 0
and 1, and the algorithm stops when the upper and lower bounds are

4For unlabeled results τ-s such that Prv(τ) = w, estimated label
φ(τ) = pw. For the labeled results, the fraction having label 1
(Good) is pw.

less than ∆ away, at most log(1/∆) steps will be required. Hence
there is an implementation that runs in time O(n log(1/∆)).

Value of ∆ for optimal F-score. Let B be the number of bits
to represent each pw (fraction), fw (integer) in the input. Consider
any FS = 2 ∑w/∈S pw fw

∑w∈A pw fw+∑w/∈S fw
. B-bit numbers between 0 and 1 can

represent values t.2−B, for 0≤ t ≤ 2B−1. Multiply both numerator
and denominator of FS by 2B to get integer values in the numerator
and denominator. Each of pw fw and fw in the denominator is≤ 22B

after this multiplication, and there are at most 2n of them. The
denominator of the fraction representing difference between two
unequal F-score values is ≤ n22B+1, whereas the numerator of the
fraction is ≥ 1. Hence the difference is ≥ 1

(n22B+1)2 , and setting

∆ = 1
(n22B+1)2 suffices. This leads to the following theorem:

THEOREM 1. For simple rules, there is a poly-time optimal al-
gorithm to maximize the F-score under size constraint. The algo-
rithm runs in time O(n · (logn+B)), where B is the number of bits
used to represent each pw and fw given to the algorithm.

A natural question that may arise is whether selecting entries greed-
ily (select the next entry that gives the maximum improvement in
F-score and repeat for k steps) also gives an optimal solution. We
give an example in Appendix A to show that greedy is not optimal.

6.1.2 Recall Constraints
First, we sketch the proof of NP-hardness. Then we give the

near-optimal algorithm.
NP-hardness for exact optimization. We give a reduction

from the subset-sum problem which is known to be NP-hard [18].
In the subset-sum problem the input is a set of positive integers
I = {x1, · · · ,xn}5, and an integer C, and the goal is to decide if
there is a subset S⊆ I such that ∑xi∈S xi =C.

Our reduction creates an instance of the refinement problem in
which every number in the subset-sum instance corresponds to an
entry with fixed and low entry-precision and frequency propor-
tional to the number. In addition, we create a single word with
high entry-precision. This word ensures that the highest F-score
is achieved when the total frequency of the removed low preci-
sion words is the highest. Therefore, the maximum F-score can be
achieved only when the recall budget is used exactly. The complete
reduction is given in Appendix A.

Nearly Optimal Algorithm. We now describe a simple and
efficient algorithm that gives a nearly optimal solution when used
on a large corpus where frequencies of individual entries are small.
Our algorithm sorts the entries in increasing order of entry-precisions
pw, and selects entries according to this order until the recall bud-
get is exhausted or there is no improvement of F-score by selecting
the next entry (the pseudocode of the algorithm is straightforward
and is omitted). Clearly the algorithm runs in time O(n logn). For-
mally, we prove the following theorem that gives a lower bound on
the F-score of the solution produced by our algorithm.

THEOREM 2. Let w1, · · · ,wn be the entries sorted by the cor-
responding entry-precisions p1 ≤ ·· · ≤ pn (here pi = pwi). Let S∗

be the set of entries whose removal gives the optimal F-score and
RS̄∗ ≥ ρ . Let r∗ = ∑i∈S̄∗ pi fi and let ` be the largest index for which
∑i>` pi fi ≥ r∗. Then the set S returned by our algorithm satisfies

FS̄ ≥
2∑i∈S̄∗ pi fi

∑i∈S̄∗ fi +∑i pi fi + fmax/p`+1
.

5The subset-sum problem is NP-hard even for positive integers.

PROOF. Let pi = pwi and fi = fwi , where p1 ≤ ·· · ≤ pn. Let
fmax = max{ f1, . . . , fn}, Si = {w j : 1 ≤ j ≤ i} and S = A \ S. Let
r` =∑i∈S` pi fi =∑i>` pi fi. By definition, r∗+ fmax≥ r`≥ r∗. Note
that recall RS` = r`/∑i pi fi ≥ r∗/∑i pi fi = RS∗ ≥ ρ . Due to the
monotonicity check, the algorithm returns a solution with F-score
≥ FS` . Hence we give a lower bound on PS` .

Observe that: (1) ∑i∈S`\S∗ pi fi − ∑i∈S∗\S` pi fi = ∑i∈S` pi fi

− ∑i∈S∗ pi fi ≤ fmax, and, (2) ∑i∈S`\S∗ fi ≤
∑i∈S`\S∗

pi fi

p`+1
≤

(∑i∈S∗\S`
pi fi+ fmax)

p`+1
≤ ∑i∈S∗\S` fi +

fmax
p`+1

. From (1), (2): ∑i∈S` fi ≤

∑i∈S∗ fi +
fmax
p`+1

. Hence PS` =
r`

∑i∈S`
fi
≥ r∗

∑i∈S∗ fi+ fmax/p`+1
, and, FS` =

2
1/R

S`
+1/P

S`
≥ 2

1/RS∗+1/P
S`
≥ 2∑i∈S∗ pi fi

∑i∈S∗ fi+∑i pi fi+
fmax
p`+1

Note that the lower bound guaranteed by the algorithm differs
from the optimal F-score FS̄∗ only by the addition of the error term
fmax
p`+1

to the denominator. Individual frequencies are likely to be
small when the given corpus and the dictionary are large. At the
same time ` and hence p`+1 are determined solely by the recall
budget. Therefore the error term fmax

p`+1
is likely to be much smaller

than the denominator for a large dictionary. Our experiments sup-
port this argument. Another surprising property of this algorithm
is that while it is not necessarily optimal in general, without the
recall budget (i.e. ρ = 0), it finds the globally optimal solution; we
defer the proof to the full version of the paper due to lack of space.
Naturally, the slightly more involved Algorithm 1 with k = n also
gives the optimal solution for ρ = 0.

6.2 Complex Rules
The optimization problems become substantially harder for com-

plex rules. In Section 6.2.1, we show that even for a complex rule as
simple as “firstname-lastname” (rule R4 in Figure 1) the optimiza-
tion problem for size constraint is NP-hard. Further, the problem is
NP-hard even when the independence and rule correctness assump-
tions we make in our statistical model hold. Note that this problem
was shown to be poly-time solvable for simple rules. The case of
recall constraint has already been shown to be NP-hard even for
simple rules. Then in Section 6.2.2 we discuss efficient algorithms
that we evaluate experimentally.

6.2.1 NP-hardness for Size Constraint
We give a reduction from the k′-densest subgraph problem in bi-

partite graphs [11]. Here the inputs are a bipartite graph H(U,V,E)
with n′ vertices and m′ edges, and an integer k′ < n′. The goal is
to select a subset of vertices W ⊆ U ∪V , |W | = k′, such that the
subgraph induced on W has the maximum number of edges. We
will denote the set of edges in the induced subgraph on W (every
edge in the subgraph has both its endpoints in W) by E(W).

For simplicity, first we prove a weaker claim: removing a subset
S with exactly k (as opposed to at most k) vertices is NP-hard. Intu-
itively, the vertices correspond to entries and the edges correspond
to results. We show that if the induced subgraph on a subset of ver-
tices of size k′ has a large number of edges, then removing entries
in the complement of this subset gives high F-score.

Given an instance of the k′-densest subgraph problem, we cre-
ate an instance of the dictionary refinement problem as follows.
The vertices in U and V respectively correspond to the entries in
the firstname and lastname dictionaries. Every edge (u,v) ∈ E cor-
responds to a unique provenance expression φu,v = uv, where the
entries u and v are chosen from these two dictionaries respectively.
For each (u,v) ∈ E, there is one result with label 1 (Good), and one

with label 0 (Bad). The parameter k in the dictionary refinement
problem is k = n′− k′. It is not hard to see that there is a subset
W ⊆U ∪V , such that |W |= k′ and E(W)≥ q if and only if there is
a subset S for the dictionary refinement problem such that |S| = k
and FS̄ ≥

2
m′
q +2

(proof is deferred to the full version).

The residual precision in the above reduction is a constant for all
choices of S, and therefore, the F-score is a monotone function of
the residual recall. Hence the above reduction does not work for the
relaxed constraint |S| ≤ k (the residual recall is always maximized
at S = /0, i.e. when k = 0, independent of the k′-densest subgraph
solution). Below we sketch the reduction for |S| ≤ k, the complete
reduction is deferred to the full version due to space constraint.

Outline of reduction for |S| ≤ k. To strengthen the above re-
duction for |S| ≤ k, we retain the graph with a good and a bad re-
sult for every edge as before. In addition, we add s = mn Good

results that are unrelated to anything; they will make the differ-
ences in the recall between solutions tiny (while preserving mono-
tonicity in the size of E(W)). For every original entry u ∈U ∪V ,
we add s Bad results (u,ui) 1 ≤ i ≤ s connected to it. The entries⋃

u∈U∪V {ui : 1 ≤ i ≤ s} are called auxiliary-bad entries. This way
the precision will be roughly equal to 1

n−k (since these results dom-
inate the total count) and hence solutions with smaller number of
entries removed will have noticeably lower precision. Removing
any of the auxiliary bad entries will have a tiny effect, so any opti-
mal solution will always remove the entries corresponding to graph
vertices U ∪V . Finally, it is easy to observe that labels for results
that we create in this reduction can be obtained by assuming inde-
pendent entry-precisions for all the dictionary entries created in the
reduction. This proves the following theorem:

THEOREM 3. For complex rules, maximizing the F-score under
size constraint is NP-hard even for the firstname-lastname rule (i.e.,
the rule R4 in Figure 1), and even when the entry-precisions satisfy
independence.

6.2.2 Refinement Algorithms
Since the dictionary refinement problem is NP-hard for complex

rules under both size and recall constraints, we propose and evalu-
ate efficient algorithms that work well in practice. These algorithms
take the (actual or estimated) label and the provenance of each re-
sult as input, and produce a subset of entries to remove across all
dictionaries.

Some natural and simple approaches that we examine for size
constraint are (1) choosing (at most) top-k entries in decreasing
order of the fraction of Bad results or the number of Bad results
they produce, ignoring the actual provenance polynomials, and (2)
greedily choosing (at most) k entries that give the maximum im-
provement in the F-score. Note that the implementation of these al-
gorithms involves repeated computation of the surv(S) sets after
each entry is included to S by evaluating the provenance polynomi-
als of all results.

In addition, we improve the solution obtained by each of these
algorithms by performing a hill climbing algorithm from the so-
lution returned by the algorithm to find a local maximum. Here
two solutions (set of entries to be deleted) S1,S2 are considered to
be neighbors if S2 can be obtained from S1 by replacing an entry
w1 ∈ S1 with a new entry w2 /∈ S1. We iteratively choose the neigh-
bor that gives the maximum improvement ∆F in the F-score. The
algorithm stops if there is no more change in the set S of entries be-
ing removed, or a specified maximum number of iterations allowed
is reached. The pseudocode for the generic hill-climbing algorithm
is given in Algorithm 2.

For recall constraint, we use the same approach. However, while

Algorithm 2 Generic hill-climbing Algorithm for complex rules,
size constraint (given maximum number of iterations MAX)

1: – Find an initial solution (an array) S.
2: while S changes and the no. of iterations is ≤MAX do
3: for each position i in S do
4: Let w = S[i], and let f be the current F-score
5: for each entry w′ /∈ S do
6: Compute the new fscore fw,w′ using S\{w}∪{w′}.
7: end for
8: Let wm = argmaxw′ fw,w′ .
9: If fw,w∗ > f , S[i] = wm. Otherwise S is unchanged.

10: end for
11: end while
12: Output the set S.

doing the local search using hill climbing, we maximize ∆F/∆R at
each step (∆R denotes the change in recall by deleting one addi-
tional entry), since we are trying to maximize F while still sat-
isfying R ≥ ρ for a given recall budget ρ . These algorithms are
empirically evaluated in Section 7.2.2.

7. EXPERIMENTS
Now we present our experimental results. We discuss the datasets

and extractors used in our experiments in Section 7.1. In Sec-
tion 7.2, we evaluate the refinement algorithms on fully labeled
datasets and compare their performance and efficiency; this supple-
ments the theoretical results derived earlier. We evaluate our label
estimation approach on partially labeled datasets in Section 7.3.

Experimental Settings. We used SystemT v1.0.0 [25, 32],
enhanced with a framework to support provenance of the results
[26]. The rules are specified in AQL (Annotation Query Language),
which is the rule language of SystemT. All experiments were im-
plemented in Java with JDK 6.0, and run on a 64-bit Windows
7 machine with Intel(R) CoreT M i7-2600 processor (4 GB RAM,
3.40 GHz).

7.1 Evaluation Datasets and Extractors
We used two labeled datasets in our experiments: CoNLL2003

(CONLL in short, with 945 documents) and ACE2005 (ACE in
short, with 342 documents)6; both these datasets are frequently
used in official Named Entity Recognition competitions [3, 36].

Each dataset contains occurrences identified by “(document id,
begin offset, end offset)”, and tagged with the corresponding entity
name (Person, Location, Organization, etc.). Given an extractor, a
result is Good (true positive) if it belongs to the set of occurrences
for the corresponding entity, otherwise it is Bad (false positive).

We primarily considered two extractors to evaluate the cases of
simple rules (provenance polynomials comprises a single variable)
and complex rules (arbitrary provenance polynomials): (1) For sim-
ple rules a Person extractor is used, which comprises a single AQL
rule (see Section 3) and a single dictionary “name.dict” containing
contains both first and last names (12992 entries in total); (2) For
complex rules, we use an Organization extractor which is part of a
generic Named Entity Extractor for Person, Location and Organiza-
tion ([9]). This extractor uses a variety of (over 400) rules and more
than 120 dictionaries curated from public data sources such as the
US Census Bureau (Census, 2007) and Wikipedia. There are dic-

6We do not consider larger labeled datasets because these are usu-
ally hard to come by in practice. However, we do show that the
quality of the results output by the algorithm improves as more la-
beled data is available

tionaries for common first and last names from different countries,
salutation and suffixes for person names, different locations (cities,
states, countries, etc.), industries and organizations (medical, gov-
ernment, education, etc.), months and days and so on. In particu-
lar to extract Organization entities, it generates candidate mentions
using dictionaries of full organization names, rules that combine
syntactic features (capitalized tokens) with dictionaries of clues in-
cluding industry suffixes (e.g.,“Technologies”) or company suffixes
(“Co.”, “Ltd.”), as well as complex filtering rules to disambiguate
across different types of named entities.

Handling set-difference operation in the extractor. In practi-
cal extractors, including the complex extractor used in our exper-
iments, set-difference operators (like SQL MINUS) are typically
unavoidable. For instance, the extractor may output a person name
if it appears in a dictionary of common names, and it does not ap-
pear in the dictionary of common organization names. In general,
the extractor may output a tuple t if it appears in an intermediate
view R1 (as another tuple t1) and does not appear in another view
R2. However, note that if t is output, there is no tuple t2 in R2, so
it is not possible to write Prv(t) as Prv(t1) · ¬Prv(t2). In this case
we store Prv(t) = Prv(t1) [26]. This approach is always sound (re-
moving t1 does remove t), and it is not hard to see that it is complete
as well as long as there is no nested set-difference operations (in
that case both Prv(t1),Prv(t2) are monotone and the only way to
remove a result t by deleting entries is by removing t1). For nested
difference operations, t2 may appear (and as a result t disappears)
if some entries are removed. However, to handle this we need to re-
peatedly run the complex extractor in our algorithms which is not a
scalable approach. Therefore, we use Prv(t) = Prv(t1) (which are
monotone boolean expressions) and our algorithms operate with
these provenance polynomials as inputs.

Here we present results for the simple person extractor on the
CONLL dataset (simple rule case), and the organization extractor
from the sophisticated annotator mentioned above on ACE (com-
plex rule case); results with other combinations of extractors and
datasets are similar and are omitted for space limitations.

7.2 Dictionary Refinement with Full Labeling
Here we evaluate the algorithms proposed in Section 6 for sim-

ple and complex rules, both in terms of the resulting F-score after
refinement and running time of the algorithms.

7.2.1 Refinement Algorithms for Simple Rules
For both size and recall constraints, we compare our algorithms

(Sections 6.1.1 and 6.1.2) with the greedy algorithms proposed for
complex rules (Section 6.2.2) and two other natural approaches.
The algorithms compared for size constraint are (see Figure 2 (i)):
(1) K-Optimal: Algorithm 1 with ∆ = 0.001, (2) K-Greedy: the
greedy algorithm for complex rules – the entry giving the maximum
increment in F-score (i.e. ∆F) is selected next, (3) K-BadFraction:
chooses the top-k entries in the decreasing order of the fraction
of Bad results, (4) K-BadCount: chooses the top-k entries in the
decreasing order of the number of Bad results.

The algorithms compared for recall constraint are (see Figure 2
(ii)): (1) RecBudget-Near-Opt: the near-optimal algorithm that se-
lects entries in the decreasing order of the fraction of Bad results
(see Section 6.1.2), (2) RecBudget-Greedy-FR: the greedy algo-
rithm for complex rules that maximizes the incremental improve-
ment in F-score relative to the decrease in recall (i.e. ∆F/∆R) at
each step, (3) RecBudget-Greedy: algorithm similar to K-Greedy
that maximizes ∆F at each step, (4) RecBudget-BadCount: chooses
the entries in the decreasing order of the number of Bad results.
Each algorithm is run until the given recall budget ρ is exhausted.

0 50 100 150 200

0.
84

0.
88

0.
92

0.
96

Size Vs F−score

Size (K)

F
−

sc
or

e

K−Optimal
K−Greedy
K−BadFraction
K−BadCount

0.980 0.985 0.990 0.995 1.000

0.
86

0.
90

0.
94

Recall Vs F−score

Recall

F
−

sc
or

e

RecBudget−Near−Opt
RecBudget−Greedy−FR
RecBudget−Greedy
RecBudget−BadCount

Figure 2: Refinement algorithms for simple rules: F-score.

0 50 100 150 200

0
1

2
3

4
5

6
7

Size Vs Time

Size (K)

T
im

e
(M

ill
i S

ec
)

K−Optimal
K−Greedy

0.980 0.985 0.990 0.995 1.000

0
2

4
6

8

Recall Budget Vs Time

Recall Budget

T
im

e
(M

ill
i S

ec
)

RecBudget−Near−Opt
RecBudget−Greedy−FR

Figure 3: Refinement algorithms for simple rules: Running time.

Observations. First and foremost, Figure 2 shows that dictio-
nary refinement improves the F-score for both size and recall con-
straints. For both constraints, the performance of our (near-) op-
timal algorithms and the greedy algorithms for complex rules are
comparable on our datasets. They also perform as well or better
than the other two algorithms. However, as we have shown in Ex-
ample 1, the greedy algorithm may not give optimal solution for
size constraint, and as discussed below, our algorithms run faster
than the greedy algorithms.

Figure 3 gives the running time of the best two algorithms for
both size and recall constraints, averaged over 100 runs. This fig-
ure shows that the algorithms are efficient and therefore can be em-
bedded in interactive tools. After a certain value of size or recall
budget, removing more dictionary entries does not improve the F-
score; therefore the greedy algorithm stops and the curve becomes
stable. For size (recall) constraint the greedy algorithms requires
more time than the (near-) optimal algorithms at higher values of k
(lower values of ρ , respectively). For size constraint, optimal and
greedy algorithms run in O(n logn) and O(kn) time respectively, n
being the number of dictionary entries; the running times are sim-
ilar for recall constraint. For ∆ = 0.001, K-Optimal converges in
only 5 to 6 iterations. The advantage in running time of our algo-
rithms is expected to be even more substantial for larger datasets.

7.2.2 Refinement Algorithms for Complex Rules
For complex rules, we compare the local search algorithms pre-

sented in Section 6.2 with other natural approaches. Similar to the
case of simple rules, for size constraint, we test (1) K-Greedy: se-
lects the next entry giving maximum ∆F , and (2) K-BadCount and
(3) K-BadFraction: selects the next entry that has produced the
maximum number and fraction of Bad results respectively. These
algorithms are compared with (see Figure 4 (i)): (4) K-LocalSearch:
our local search (hill-climbing) algorithm which finds the initial
solution by K-BadFraction, and then finds the local maximum us-
ing Algorithm 2. Although we have also tried K-Greedy and K-
BadFraction to give the initial solution, K-BadFraction outperforms
these algorithms both as a standalone algorithm, and also when it
is used as the initial solution for K-LocalSearch.

The corresponding algorithms for recall constraint are
(1) RecBudget-Greedy-FR (selects the next entry that maximizes
∆F/∆R at each step), (2) RecBudget-BadCount, (3) RecBudget-

0 50 100 150 200

0.
60

0.
70

0.
80

Size Vs F−score

Size (K)

F
−

sc
or

e

K−LocalSearch
K−Greedy
K−BadCount
K−BadFraction

0.980 0.985 0.990 0.995 1.000

0.
74

0.
78

0.
82

0.
86

Recall Vs F−score

Recall

F
−

sc
or

e

RecBudget−LocalSearch
RecBudget−Greedy−FR
RecBudget−BadCount
RecBudget−BadFraction

Figure 4: Refinement algorithms for complex rules: F-score.

0 50 100 150 200

0
40

00
80

00
14

00
0

Size Vs Time

Size (K)

T
im

e
(M

ill
i S

ec
)

K−LocalSearch
K−BadFraction

0.980 0.985 0.990 0.995 1.000

0
50

00
10

00
0

15
00

0

Recall Budget Vs Time

Recall Budget

T
im

e
(M

ill
i S

ec
)

RecBudget−LocalSearch
RecBudget−BadFraction

Figure 5: Refinement algorithms for complex rules: Running time.

BadFraction, and (4) RecBudget-LocalSearch: our proposed lo-
cal search algorithm that finds the initial solution by RecBudget-
BadFraction and then finds the local maximum by maximizing ∆F/∆R
at each step of the search (see Figure 4 (ii)).

Observations. Figure 4 shows that the proposed local search
algorithms perform better than the other algorithms for both size
and recall constraints. Figure 5 compares the running time of the
best two algorithms for both size and recall constraints averaged
over 10 runs (local search and sorting by the fraction of bad re-
sults). Naturally, K-BadFraction and RecBudget-BadFraction have
much better running time than the local search algorithms as they
involve a single round of sorting of the entries. The local search
algorithms K-LocalSearch and RecBudget-LocalSearch first exe-
cute K-BadFraction and RecBudget-BadFraction respectively, and
then continue searching for better solutions. Based on the applica-
tion (e.g. for finding the obvious candidate entries to be removed),
K-BadFraction may be used instead of K-LocalSearch for faster
execution. The runtime for RecBudget-LocalSearch is high even at
ρ = 1.0 (unlike K-LocalSearch at k = 0) since at ρ = 1.0 many en-
tries may get deleted that produce no Good results. Further, running
time of RecBudget-LocalSearch is not monotone with ρ unlike K-
LocalSearch. For lower values of ρ the algorithm can choose en-
tries that consume most of the recall budget and stop earlier which
cannot be selected when ρ is high.

7.3 Refinement with Incomplete Labeling
Now we evaluate our label estimation approaches for incomplete

labeling of the results. We estimate the label of each unlabeled re-
sult using the algorithms in Section 5; the actual labels are retained
for labeled results. Then we run the refinement algorithms on the
entire resultset. We call this the ESTIMATED approach, and com-
pare it with the NOT-ESTIMATED approach, where the algorithms
are run only on the labeled resultset.

In our tests we choose a random subset of the results in our
dataset and define it to be the labeled resultset (that is, the rest of
the labels are hidden from our label estimation and refinement al-
gorithms). The set of deleted entries returned by each algorithm for
both of these approaches are evaluated against the actual Good/Bad
labels for the entire dataset to obtain the F-score after refinement.
This is repeated 10 times, using different random subsets of labeled
results and the mean F-scores are plotted in Figure 6 for different

0.
90

0
0.

91
0

0.
92

0

Effect of Labeled Data Size (Size)

Size of entire data/Size of labeled data

F
−

sc
or

e

1 2 4 8 16 32

ESTIMATED
NOT−ESTIMATED 0.

72
0.

76
0.

80

Effect of Labeled Data Size (Size)

Size of entire data/Size of labeled data

F
−

sc
or

e

1 2 4 8 16

ESTIMATED
NOT−ESTIMATED

Figure 6: Effect of the labeled data size (simple and complex rules).

sizes of labeled result set and size constraint (measured as the frac-
tion of all the results in the dataset). We omit the plots for recall
constraints for both simple and complex rules due to lack of space,
and discuss them in text.

7.3.1 Incomplete Labeling for Simple Rules
As mentioned in Section 5.3 (Observation 2), the label of a re-

sult produced by an entry is simply the fraction of Good results
produced by that entry (entries with no labeled results are ignored),
and therefore, the EM algorithm is not run for this case. Figure 6 (i)
shows that, for size constraint, ESTIMATED approach gives better
F-score over the NOT-ESTIMATED approach, and the benefit is
higher when fewer results are labeled (indeed, both approaches are
equivalent when fraction of labeled results equals 1). However, for
recall constraint, these two approaches give essentially the same re-
sult. This is as expected, since our near-optimal algorithm chooses
the entries according to the fraction of Bad results, which is the
same for both labeled and the entire resultset.

7.3.2 Incomplete Labeling for Complex Rules
We first estimate the entry-precisions by the EM algorithm that

uses the provenance and labels of the labeled results. (ref. Sec-
tion 5.3). The EM algorithm is fast enough for practical purposes
(it converges in about 15-20 steps and takes about 2 seconds to run).
Then the missing labels are estimated by evaluating the provenance
of the unlabeled results using the estimated entry-precisions (ref.
Section 5.2). Figure 6 (ii) shows that the ESTIMATED approach is
better or at least as good as the other approach. However, the im-
provement is not as significant as in the case of simple rules (also
in the case of recall constraint), possibly at least in part because of
our simplifying independence assumption not holding in text data.
Finding a more practical model toward estimating missing labels
will be an interesting future work. Nevertheless, our label esti-
mation technique may be useful in other applications, e.g. in view
maintenance in relational setting, if the independence assumption
in the source data holds.

7.4 Qualitative Evaluation
Figure 7 shows the first 10 entries returned by our (near-) optimal

algorithms for simple rules when 10% of the results are labeled.
We used the Person extractor described earlier, and indeed, these
entries are incorrect or ambiguous as person names. We also see
that the entries removed for recall constraint are the ones with all
Bad results (they improve precision and F-score without reducing
recall). However, for size constraint, entries with non-zero Good

counts may also be chosen as the number of Good and Bad results
also play an important role in this case.

For complex rules, we list the entries returned by K-LocalSearch
for k = 10. The entries are administration, coalition, force, gov-
ernment, guess, U.N., forces, lot, some collected from more than
one dictionaries (and therefore are treated as different entries). For

K-Optimal
(good,bad) Count in Result Set

Entry Labeled Labeled + Unlabeled

china (0, 12) (0, 100)
kong (0, 11) (0, 70)
june (0, 9) (0, 97)
hong (1, 10) (2, 71)
september (0, 8) (0, 101)
king (0, 5) (6, 20)
louis (1, 6) (4, 33)
long (0, 4) (0, 66)
cleveland (0, 4) (0, 30)
april (0, 4) (0, 30)

RecBudget-Near-Opt
(good,bad) Count in Result Set

Entry Labeled Labeled + Unlabeled

china (0, 12) (0, 100)
kong (0, 11) (0, 70)
june (0, 9) (0, 97)
september (0, 8) (0, 101)
king (0, 5) (6, 20)
long (0, 4) (0, 66)
cleveland (0, 4) (0, 30)
april (0, 4) (0, 42)
january (0, 4) (0, 28)
re (0, 4) (0, 54)

Figure 7: Top 10 entries output for size and recall constraints.

instance, the entry U.N. produces some Good results, e.g. U.N. Se-
curity Council and U.N. Foundation, and many Bad results when
extracted by itself, because in these instances it overlaps with a
person’s job description, e.g. Jeremy Greenstock, British Ambas-
sador to U.N., and is labeled as part of Person mentions in [3].
Looking at these entries, the human supervisor may investigate the
Good and Bad results they produce, and delete these entries or fur-
ther refine the rules to remove the false positives in the output of
the system. For instance, our system identifies U.N., an example
entry that could be handled by adding a special rule for filtering
Organization mentions identified as part of a Person’s position.

8. CONCLUSION AND FUTURE WORK
In this paper we studied one important aspect of building a high

quality information extraction system, that of refining dictionaries
used in the extractor. We provided rigorous theoretical analysis
and experimental evaluation of the optimization problems that such
refinement entails. We also proposed and evaluated a statistical
approach for coping with small labeled data. First and foremost,
our experimental results show that dictionary refinement can sig-
nificantly increase the quality (F-score) of extraction using even a
small amount of labeled data. Further, our experimental results val-
idate the effectiveness of our algorithms, as well as show which of
the several other natural algorithms perform better on real data sets.

There are several interesting future directions. Although the in-
dependence assumption in our statistical modeling is a good start-
ing point, correlation among the results and their labels is highly
likely to exist for text data. A more detailed modeling allowing
correlation will be an interesting future work. Another interest-
ing directions include adaptively labeling a corpus for dictionary
refinement given a budget on the number of labels, and fully incor-
porating non-monotonic operators into our framework, including
set difference and operators for removing span overlap.

9. REFERENCES
[1] In www.census.gov.
[2] In www.geonames.org.
[3] Automatic Content Extraction 2005 Evaluation Dataset. 2005.
[4] E. Agichtein and L. Gravano. Snowball: Extracting Relations from Large

Plain-Text Collections. In ACM DL, pages 85–94, 2000.
[5] N. Ashish, S. Mehrotra, and P. Pirzadeh. XAR: An Integrated Framework for

Information Extraction. In WRI Wold Congress on Computer Science and
Information Engineering, 2009.

[6] P. Buneman, S. Khanna, and W.-C. Tan. On propagation of deletions and
annotations through views. In PODS, pages 150–158, 2002.

[7] X. Chai, B.-Q. Vuong, A. Doan, and J. F. Naughton. Efficiently incorporating
user feedback into information extraction and integration programs. In
SIGMOD, 2009.

[8] J. Cheney, L. Chiticariu, and W. Tan. Provenance in databases: Why, how, and
where. Foundations and Trends in Databases, 1(4):379–474, 2009.

[9] L. Chiticariu, R. Krishnamurthy, Y. Li, F. Reiss, and S. Vaithyanathan. Domain
adaptation of rule-based annotators for named-entity recognition tasks. In
EMNLP, pages 1002–1012, 2010.

[10] W. W. Cohen and S. Sarawagi. Exploiting dictionaries in named entity
extraction: combining semi-markov extraction processes and data integration
methods. In KDD, pages 89–98, 2004.

[11] D. G. Corneil and Y. Perl. Clustering and domination in perfect graphs. Discrete
Applied Mathematics, 9(1):27 – 39, 1984.

[12] H. Cunningham. JAPE: a Java Annotation Patterns Engine. Research
Memorandum CS – 99 – 06, University of Sheffield, May 1999.

[13] N. N. Dalvi, K. Schnaitter, and D. Suciu. Computing query probability with
incidence algebras. In PODS, pages 203–214, 2010.

[14] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. JOURNAL OF THE ROYAL
STATISTICAL SOCIETY, SERIES B, 39(1):1–38, 1977.

[15] H. Elmeleegy, J. Madhavan, and A. Halevy. Harvesting relational tables from
lists on the web. PVLDB, pages 1078–1089, 2009.

[16] D. Eppstein and D. S. Hirschberg. Choosing subsets with maximum weighted
average. J. Algorithms, 24(1):177–193, 1997.

[17] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soderland,
D. S. Weld, and A. Yates. Methods for domain-independent information
extraction from the web: an experimental comparison. In AAAI, 2004.

[18] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. 1979.

[19] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS,
pages 31–40, 2007.

[20] J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal, M. Spaniol,
B. Taneva, S. Thater, and G. Weikum. Robust disambiguation of named entities
in text. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, EMNLP ’11, 2011.

[21] D. Jurafsky and J. Martin. Speech and language processing: an introduction to
natural language processing, computational linguistics, and speech
recognition. Pearson Prentice Hall, 2009.

[22] J. Kazama and K. Torisawa. Inducing gazetteers for named entity recognition by
large-scale clustering of dependency relations. In ACL, pages 407–415, 2008.

[23] B. Kimelfeld, J. Vondrák, and R. Williams. Maximizing conjunctive views in
deletion propagation. In PODS, pages 187–198, 2011.

[24] Z. Kozareva. Bootstrapping named entity recognition with automatically
generated gazetteer lists. In EACL: Student Research Workshop, 2006.

[25] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, S. Vaithyanathan, and H. Zhu.
SystemT: a system for declarative information extraction. SIGMOD Record,
37(4):7–13, 2008.

[26] B. Liu, L. Chiticariu, V. Chu, H. V. Jagadish, and F. R. Reiss. Automatic Rule
Refinement for Information Extraction. PVLDB, 2010.

[27] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large
annotated corpus of english: The penn treebank. COMPUTATIONAL
LINGUISTICS, 19(2):313–330, 1993.

[28] D. Maynard, K. Bontcheva, and H. Cunningham. Towards a semantic extraction
of named entities. In Recent Advances in Natural Language Processing, 2003.

[29] A. Meliou, W. Gatterbauer, S. Nath, and D. Suciu. Tracing data errors with
view-conditioned causality. In SIGMOD, 2011.

[30] A. Mikheev, M. Moens, and C. Grover. Named entity recognition without
gazetteers. In EACL, pages 1–8, 1999.

[31] D. Nadeau, P. D. Turney, and S. Matwin. Unsupervised named-entity
recognition: Generating gazetteers and resolving ambiguity. In Canadian
Conference on AI, pages 266–277, 2006.

[32] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and S. Vaithyanathan. An
algebraic approach to rule-based information extraction. In ICDE, pages
933–942, 2008.

[33] E. Riloff. Automatically constructing a dictionary for information extraction
tasks. In KDD, 1993.

[34] W. Shen, P. DeRose, R. McCann, A. Doan, and R. Ramakrishnan. Toward
best-effort information extraction. In SIGMOD, 2008.

[35] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan. Declarative
information extraction using datalog with embedded extraction predicates. In
VLDB, pages 1033–1044, 2007.

[36] E. F. Tjong Kim Sang and F. De Meulder. Introduction to the CoNLL-2003
shared task: language-independent named entity recognition. In HLT-NAACL,
2003.

[37] L. G. Valiant. The complexity of computing the permanent. Theor. Comput.
Sci., 8:189–201, 1979.

[38] C. J. van Rijsbergen. Information Retrieval. Butterworth, 1979.
[39] A. Yates, M. Banko, M.Broadhead, M. J. Cafarella, O. Etzioni, and

S. Soderland. TextRunner: Open Information Extraction on the Web. In
HLT-NAACL (Demonstration), pages 25–26, 2007.

APPENDIX
A. PROOFS FROM SECTION 6.1

EXAMPLE 1. Greedy is not optimal. Let n = 4 and k = 2,
A= {w1,w2,w3,w4}. The pair of entry-precision and (relative) fre-
quency (pwi , fwi), 1 ≤ i ≤ 4 of these entries are (0.0284,0.2374),

(0.0050,0.2846), (0.0040,0.2485), and (0.0033,0.2295) respec-
tively. Then the original F-score FA = 19.64× 10−3. Removing
entries wi, 1 ≤ i ≤ 4 gives F-score 8.22× 10−3, 23.42× 10−3,
23.44× 10−3, and, 23.47× 10−3 respectively. Hence greedy will
choose entry w4 in the first step. Given that w4 is already chosen,
removing w1,w2 and w3 in addition gives resp. F-scores 8.90×
10−3, 31.21× 10−3, 30.70× 10−3. Hence the output of greedy is
{w4,w2}. But the F-score after removing {w2,w3} is 31.46×10−3,
which is better than the solution of greedy, and in this case also is
the optimal solution. It can be verified that this example also shows
non-optimality of other natural choices like choosing entries in the
decreasing order of fraction or count of Bad results.

NP-hardness: Simple Rules, Recall Constraint. Given positive
integers I = {x1, · · · ,xn} and an integer C, the goal of the subset-
sum problem is to decide if there is S⊆ I such that ∑xi∈S xi =C.

Construction. There are n dictionary entries A = {w1, · · · ,wn}
corresponding to x1, · · · ,xn. Each wi has fwi = cxi, and pwi =

1
c

(there are pwi fwi = xi Good results). We choose c = 3 + K. In
addition, there is a special entry w∗ such that fw∗ = 1 and pw∗ = 1.
The recall budget ρ = 1+B

1+K . The goal is to check if there is a subset

S′ such that the F-score FS′ ≥
2(1+B)

(1+K)+(1+cB) and the recall RS′ ≥ ρ .
The NP-hardness follows from the following lemma.

LEMMA 1. There exists S′ with FS′ ≥
2(1+B)

(1+K)+(1+cB) and RS′ ≥
ρ , if and only if the subset-sum instance has a solution.

PROOF. (if) Let the subset-sum instance have a solution S such
that ∑xi∈S xi = C, i.e. ∑xi∈I\S xi = K−C = B. Let S′ = {wi : xi ∈

S}. First, RS′ =
∑w/∈S pw fw
∑w∈A pw fw

=
1+∑xi∈I\S xi

1+∑xi∈I xi
= 1+B

1+K = ρ . Also FS′ =

2∑w/∈S pw fw
∑w∈A pw fw+∑w/∈S fw

= 2
1+∑xi∈I\S xi

(1+∑xi∈I xi)+(1+∑xi∈I\S cxi)
=

2(1+B)
(1+K)+(1+cB) .

(only if) Suppose S′ is such that FS′ ≥
2(1+B)

(1+K)+(1+cB) and RS′ ≥
ρ = 1+B

1+K . Wlog., assume that w∗ /∈ S′, otherwise we can exclude
w∗ from S′ without decreasing the values of precision or recall
(hence also the F-score). Hence all entries in S′ corresponds to
integers in the subset-sum problem, and Let the corresponding set
of integers in the subset-sum problem be S. Now RS′ =

∑w/∈S pw fw
∑w∈A pw fw

=
1+∑xi∈I\S xi

1+K ≥ 1+B
1+K , or, ∑xi∈I\S xi ≥ B ——- (I) Again, FS′ =

2 ∑w/∈S′ pw fw
∑w∈A pw fw+∑w/∈S′ fw

=
2(1+∑xi∈I\S xi)

(1+K)+(1+c∑xi∈I\S xi)
≥ 2(1+B)

(1+K)+(1+cB) . Rear-

ranging and simplifying both sides, (c− 2−K)∑xi∈I\S xi ≤ (c−
2−K)B. Since c = 3+K, ∑xi∈I\S xi ≤ B ——- (II)

From (I) and (II), ∑xi∈I\S xi =B, or, ∑xi∈S xi =K−B=C. There-
fore S⊆ I is a solution for the subset-sum problem.

B. UPDATE RULES FOR EM
Here we derive the update rules for the EM-based algorithm de-

scribed in Section 5.3. Let us denote the parameter vector at itera-
tion t to be ~θ t . Suppose cwi,τ j ,t =E[y`j|τ j,~θ

t], where τ j ∈ Succ(wi)

and Prv(y`j) = wi. We show that the update rules for parameters

pi has a nice closed form: pi =
C1

C1+C2
, where C1 = ∑cwi,τ j ,t and

C2 = ∑(1− cwi,τ j ,t), where the sum is over 1 ≤ j ≤ N such that
τ j ∈ Succ(wi). This gives ~θ t+1, estimation of the parameters in
the t +1-th round. The log-likelihood of the observed data

q(~x;~θ) = logP(~x|~θ) = ∑
N
j=1 logP(τi|~θ)

The complete data version of the problem will have the observed
data~x= 〈τ1, · · · ,τN〉 as well as the hidden data~~y= 〈y`j〉 j∈[1,N],b∈[1,`].

The expected log-likelihood of the complete data given the ob-
served data~x and current parameter vector ~θ t will be given by

E[q(~x,~~y;~θ)|~x,~θ t] = ∑
N
j=1 ∑~y j

Pr[~y j|τ j,~θ
t] logPr[τ j,~y j|~θ]

= ∑
N
j=1 ∑~y j :φ j(~y j)=τ j

Pr[~y j|τ j,~θ
t] logPr[τ j,~y j|~θ]

= ∑
N
j=1 ∑~y j :φ j(~y j)=τ j

Pr[~y j|τ j,~θ
t] log[Pr[τ j|~y j,~θ]Pr[~y j|~θ]]

= ∑
N
j=1 ∑~y j :φ j(~y j)=τ j

Pr[~y j|τ j,~θ
t] logPr[~y j|~θ] = K(say)

In the third step of the above derivation, for ~y j such that φ j(~y j) 6=
τ j,Pr[~y j|τ j,~θ

t] = 0, and in the fifth step, for ~y j such that φ j(~y j) =

τ j,Pr[τ j|~y j,~θ] = 1. Note that, given the current guess of parame-
ters ~θ t = 〈pt

1, · · · , pt
n〉, Pr[~y j|τ j,~θ

t] can be easily computed and is a

constant. For ~y j such that φ j(~y j) = τ j, Pr[~y j|τ j,~θ
t] =

Pr[~y j |~θ t]

Pr[τ j |~θ t]
=

∏y`j=1 pt
Prv(y`j)

∏y`j=0(1−pt
Prv(z`j)

)

∑φ j (~z j)=τ j

[
∏z`j=1 pt

Prv(z`j)
∏z`j=0(1−pt

Prv(z`j)
)

] (we slightly abuse the nota-

tion here: pt
Prv(y`j)

= pt
i , where Prv(y`j) = wi).

Next we rewrite K by expanding and collecting coefficients of
log pi and log(1− pi) for every word wi, i ∈ [1,n]. Then, K =

∑
N
j=1 ∑~y j :φ j(~y j)=τ j

Pr[~y j|τ j,~θ
t] logPr[~y j|θ]

=∑
N
j=1 ∑~y j :φ j(~y j)=τ j

V jt log[
`

∏
`=1

Pr[y`j|θ]]
(

let V jt = Pr[~y j|τ j,~θ
t]
)

=
N

∑
j=1

∑
~y j :φ j(~y j)=τ j

V jt log[∏
y`j=1

pPrv(y`j) ∏
y`j=0

(1− pPrv(y`j))]

=
N

∑
j=1

∑
~y j :φ j(~y j)=τ j

V jt [∑
y`j=1

log[pPrv(y`j)] ∑
y`j=0

log(1− pPrv(y`j))]

=
n

∑
i=1

N

∑
j=1,τ j∈
Succ(wi)

∑
~y j :φ j(~y j)=τ j ,

Prv(y`j)=wi

V jt

[
y`j log pi +(1− y`j) log(1− pi)

]

=
n

∑
i=1

N

∑
j=1,τ j∈Succ(wi)

Prv(y`j)=wi

E[y`j|τ j,~θ
t] log pi +(1−E[y`j|τ j,~θ

t]) log(1− pi)

=
n

∑
i=1

N

∑
j=1,τ j∈Succ(wi)

Prv(y`j)=wi

cwi,τ j ,t log pi +(1− cwi,τ j ,t) log(1− pi)

In the above equations, cwi,τ j ,t = E[y`j|τ j,~θ
t]. In the E-step, for

every word wi, and for every result τ j ∈ Succ(wi), we compute
the expectation of y`j (the `-th bit of ~y j) given the current param-

eter vector ~θ t , where Prv(y`j) = wi. This can be computed from

the probabilities Pr[~y j|τ j,~θ
t]. So for every result τ j, if φ j takes b

inputs, we have a vector of real numbers of size b after the E-step.
In the M-step, we maximize the expression K w.r.t. parameter

vector ~θ to get the next guess of the parameters ~θ t+1.

For every i∈ [1,n], δK
δ pi

= 0⇒
N
∑

j=1,τ j∈Succ(wi),

Prv(y`j)=wi

[cwi ,τ j ,t

pi
−

1−cwi ,τ j ,t

1−pi

]
=

0⇒ C1
pi
− C2

1−pi
= 0 (collecting the constants)⇒ pi =

C1
C1+C2

2

