
Sealed Calls in Java Packages

Ayal Zaks
IBM Research Laboratory in

Haifa, Israel

zaks@il.ibm.com

Vitaly Feldman
IBM Research Laboratory in

Haifa, Israel

felvit@cs.technion.ac.il

Nava Aizikowitz
IBM Research Laboratory in

Haifa, Israel

aizik@il.ibm.com

ABSTRACTDetermining the potential targets of virtual method invo
a-tions is essential for inter-pro
edural optimizations of obje
t-oriented programs. It is generally hard to determine su
htargets a

urately. The problem is espe
ially diÆ
ult fordynami
 languages su
h as Java, be
ause additional targetsof virtual
alls may appear at runtime. Current me
hanismsthat enable inter-pro
edural optimizations for dynami
 lan-guages, repeatedly validate the optimizations at runtime.This paper addresses this predi
ament by proposing a novelte
hnique for
onservative devirtualization analysis, whi
happlies to a signi�
ant number of virtual
alls in Java pro-grams. Unlike previous work, our te
hnique requires neitherwhole program analysis nor runtime information, and in-
urs no runtime overhead. Our solution is very eÆ
ient to
ompute and is based on a newly introdu
ed, seemingly un-related se
urity feature of Java �le ar
hives. On average, ouranalysis \seals" (safely devirtualizes) about 39% of the vir-tual
alls (to non-�nal methods) that appear in SPECjvm98programs, and about 29% of the
alls invoked while exe
ut-ing these programs. In the runtime library rt.jar, about 10%of the pa
kages
ontain a signi�
ant per
entage (20{60%) ofsealed
alls, with a total average of about 8.5%. Most ofthese
alls are also shown to be monomorphi
, a fa
t whi
h
an be safely exploited by aggressive inter-pro
edural op-timizations su
h as dire
t inlining. These results indi
atethat our te
hnique has a strong potential for enhan
ing theanalysis and optimization of Java programs.
Categories and Subject DescriptorsD.1.5 [Programming Te
hniques℄: Obje
t-oriented Pro-gramming; D.3.2 [Programming Languages℄: LanguageClassi�
ations|Java, Obje
t-oriented Programming ; D.3.4[Programming Languages℄: Pro
essors|Compilers, Op-timization, Run-time environments
General TermsLanguages, Performan
e

KeywordsJava, obje
t-oriented programming, inter-pro
edural anal-ysis,
all devirtualization, method inlining,
lass hierar
hygraph,
all graph, sealed pa
kage
1. INTRODUCTIONInter-pro
edural optimizations of obje
t-oriented programsare based on the determination of the potential targets ofvirtual method invo
ations. This is a
hallenging problemespe
ially for dynami
 languages su
h as JavaTM 1, be
auseadditional targets of virtual
alls may appear at runtime.In
ertain languages the programmer
an prohibit methodsfrom being overridden, thereby resolving
alls to these meth-ods. Calls to su
h \�nal" methods are not
onsidered to bevirtual
alls in this paper. Existing te
hniques that deter-mine the targets of virtual
alls in dynami
 languages eitherrestri
t dynami

lass loading (by relying on the user [36℄or by applying whole-program analysis [4℄), or in
i
t a run-time overhead. In addition, some solutions imply restri
-tions on further optimizations and some require spe
ial run-time me
hanisms. An ideal solution should have no runtimeoverhead and restri
tions. So far, all te
hniques fall short ofthis ideal.Our goal is to over
ome all these drawba
ks by identifying anew type of
alls in Java whose set of potential targets
an bedetermined
ompletely and expli
itly in advan
e, even priorto runtime. More spe
i�
ally, we say that a
all is a sealed
all if it appears inside a sealed Java pa
kage [34℄, and hasthe property that all its targets are guaranteed to belong tothe same pa
kage. Sealed
alls
an be identi�ed by analyz-ing single Java pa
kages, without relying on whole-programanalysis. Our analysis
an be viewed as an appli
ation ofalmost whole program
ompilation [7℄.Identifying sealed
alls and their potential targets fa
ilitatesaggressive inter-pro
edural intra-pa
kage optimizations. Forexample, if a sealed
all has only one potential target, it
anbe inlined safely without any pre
onditions. In addition tothe immediate appli
ation to devirtualization and inlining,our analysis
learly
ontributes to other inter-pro
eduralanalyses and optimizations su
h as immutability and es
apeanalyses [6, 10, 13, 39℄, and obje
t inlining [7, 14℄. Our te
h-nique
an be implemented eÆ
iently and
an support stati

ompilers, byte
ode-to-byte
ode transformers, or dynami

ompilers by using byte
ode annotations [3, 36℄. Sin
e our1Java is a trademark of Sun Mi
rosystems, In
.

analysis is applied to Java byte
ode, it
an be used for awide variety of languages that produ
e su
h byte
ode.The results obtained by our te
hnique indi
ate a signi�
antpotential for pra
ti
al improvements in analyses and opti-mizations. In about half of the pa
kages in the runtime li-brary rt.jar (whose pa
kages are known to be sealed ex
eptfor two), 5{60% of the virtual
alls (to non- final methods)are sealed
alls a

ording to our analysis. On average, our al-gorithm identi�es nearly 39% of all virtual
alls that appearin pa
kages of SPECjvm98TM [32℄ ben
hmarks and
andi-dates as sealed
alls (assuming pa
kages are sealed), withhalf of the pa
kages s
oring between 50% and 95%. Almost29% of all virtual
alls invoked while running these ben
h-marks were identi�ed as sealed
alls. For many pa
kages,all sealed
alls are shown to have only one possible target,whi
h makes them good
andidates for dire
t inlining.The rest of this paper is organized as follows. Se
tion 2provides a ba
kground and des
ribes related work on de-virtualization of
alls in dynami
 languages. Se
tion 3 de-�nes sealed
alls, and Se
tion 4 des
ribes an algorithm foridentifying sealed
alls and their possible targets. Se
tion 5provides data on the extent of prevalen
e of sealed
alls.Con
lusions and dire
tions for future work are presented inSe
tion 6.
2. BACKGROUND

2.1 The Devirtualization ProblemThe exe
ution time of programs
an be redu
ed
onsiderablyby using
ompiler optimizations whi
h better exploit hard-ware resour
es [27℄. Programs that
onsist of many shortpro
edures require inter-pro
edural optimizations in orderto obtain eÆ
ient optimized
ode. One of the most relevantinter-pro
edural optimization is inlining, whi
h
an improveperforman
e by redu
ing the overhead of
alls and by in-
reasing opportunities for other optimizations. In order toperform inlining and other inter-pro
edural optimizations itis essential to identify the targets of
alls.Obje
t-oriented programs promote the use of short meth-ods to en
apsulate fun
tionality and as a means of modu-larity and abstra
tion. Su
h methods are usually virtual, afa
t whi
h
ompli
ates inter-pro
edural optimizations. Ea
htime a
all to a virtual method is exe
uted, the de
laredmethod or one of several methods whi
h override it is a
tu-ally invoked, depending on the dynami
 type of the re
eiverobje
t. The ability to identify in advan
e the potential tar-gets of a virtual
all, known as
all devirtualization, is
ru
ialfor optimizing obje
t-oriented programs and has re
eivedmu
h attention in re
ent years (see, for example, [1, 11, 12,21, 20, 29, 30, 31℄).Determining the pre
ise set of potential targets of virtual
alls is related to the problem of obje
t-oriented type anal-ysis, whi
h is known to be diÆ
ult [18℄. A set of poten-tial targets
an be determined, at least
onservatively, byperforming whole-program analysis on the entire appli
ation(see [4, 12, 20, 29, 35, 36, 38℄). One simple approximationof the targets of a
all is the set of all methods that overridethe
alled method. This set
an be
onstru
ted eÆ
ientlyusing
lass hierar
hy analysis [11, 24, 31℄.

Various te
hniques have been developed in re
ent years tore�ne the set of possible targets of a virtual
all, produ
-ing subsets of the set of all overriding methods. Liveness(rapid type) analysis [4, 31℄ was used to exempt dead meth-ods (methods guaranteed never to be invoked during ex-e
ution of the program) from being potential target
andi-dates. Variable type analysis was used by the Sable resear
hgroup [35, 38℄ to obtain more a

urate results than rapidtype analysis. A variety of
ow-sensitive and
ow-insensitivetype analyses are des
ribed by Grove [21℄. All these te
h-niques in
luding the basi
 \all-overridings" approximationrely on having all the
lasses that might parti
ipate at run-time, �xed and available at analysis time.
2.2 Dynamic LanguagesIn dynami
 languages, the
omplete set of
lasses that willparti
ipate in the exe
ution of an appli
ation may not beknown in advan
e. Dynami
ally loaded
lasses may be en-
ountered only at runtime, when they are referen
ed forthe �rst time. Inter-
lass analysis su
h as
all devirtual-ization may be invalidated when new unanti
ipated
lassesare loaded. In several languages su
h as Dylan [16℄, Java [19℄and Trellis [28℄, the programmer
an prohibit
lasses fromhaving sub
lasses or methods from being overridden. Thisenables related
alls to be devirtualized safely, without therisk of future invalidation, but lays a burden on the pro-grammer and limits potential extension and reuse of the
ode. This paper deals with
alls whi
h are not expli
itlyrestri
ted to a single target by the programer.There are several approa
hes that enable inter-
lass analy-sis and optimizations for dynami
 languages su
h as Java.One approa
h is to assume that all relevant
lasses and in-terfa
es are supplied by the user in advan
e and revert totraditional stati

ompilation te
hniques. Su
h an approa
hwas adopted by the JoveTM optimizing
ompiler [26℄ whi
hanalyzes and
ompiles entire Java appli
ations. The
om-piler inside the TowerJ3.0TM deployment environment [37℄also relies on having all relevant
lasses available for its �-nal step. The major drawba
k of su
h a whole-programoptimization approa
h is that the requirement of having allrelevant
lasses available in advan
e
annot always be satis-�ed.A se
ond approa
h is to assume that new
lasses may appearat runtime and prepare me
hanisms for dealing with su
hunanti
ipated
lasses. The simplest of su
h me
hanisms isa pre
ondition that
he
ks the a
tual type of the re
eiverobje
t before exe
uting the inlined
ode. The Jalape~no dy-nami

ompiler uses su
h guards [8℄. A similar but more ro-bust method test pre
ondition was re
ently suggested [13℄.Pre
onditions are easily used by both stati
 and dynami

ompilers, but they prevent other optimizations from tak-ing full advantage of the in
reased method size provided byinlining.More sophisti
ated me
hanisms for dealing with unanti
-ipated
lasses dete
t invalidated optimizations at runtimeand
orre
t them using dynami
 re
ompilation. The JavaHotspotTM
ompiler [23℄ uses su
h a dynami
 deoptimiza-tion me
hanism. Su
h me
hanisms
an dis
over if a newlyloaded
lass invalidates any existing inlinings and
orre
t ev-ery su
h inlining immediately by re
ompiling the appropri-

ate methods. A problem
an o

ur if a method whi
h needsto be re
ompiled is
urrently exe
uting, a fa
t whi
h greatly
ompli
ates the re
ompilation pro
ess. A spe
ial me
hanismsu
h as on sta
k repla
ement in the Self system [22℄
an solvethis problem.Detlefs and Agesen [13℄ re
ently identi�ed a family of situa-tions (
alled preexisten
e) whi
h do not require on-sta
k re-pla
ement. In su
h situations
urrently-exe
uting methodsthat
ontain invalidated inlinings are allowed to
ontinue ex-e
uting the original
ode until they exit. Only subsequentinvo
ations of these methods are to exe
ute the re
ompiled
ode, a fa
t whi
h simpli�es the re
ompilation pro
ess.Ishizaki et al.[24℄
orre
t invalidated inlinings by repla
inga single instru
tion (a dire
t
all or the �rst inlined instru
-tion) with a jump to the original virtual
all. This saves re-
ompilation time but in
reases the footprint sin
e both theoriginal
all and the inlined
ode are present at all times,and it also limits the opportunities for other optimizationssin
e the inlined
ode must be kept
ontiguous.
3. SEALED CALLSExisting te
hniques for determining the potential targets ofvirtual
alls either restri
t dynami

lass-loading (by rely-ing on the user or by applying whole-program analysis), orin
i
t a runtime overhead. Our te
hnique over
omes thesedrawba
ks. The main obsta
le that prevents stati
 devirtu-alization is the possibility that a dynami
ally loaded
lasswill override the
alled method and thereby provide a newtarget for the
all. This obsta
le
an be over
ome by makingsure that no new sub
lass of the
alled
lass
an be loaded,or that the
alled method
annot be overridden by new sub-
lasses. In Java, one trivial way to ensure this is to de
larethe
alled
lass or the
alled method final, but this is notalways desired or appli
able.Our te
hnique addresses
alls to methods that are not de-
lared final (and whose
lass is not final). In su
h
ases,additional features are needed to enable stati
 devirtualiza-tion. Two key ingredients
an be
ombined to a
hieve ourgoal: the �rst restri
ts the freedom to dynami
ally load new
lasses and the se
ond restri
ts the ability to sub
lass andoverride the
alled
lass and method. The general idea is toensure that (i) all the targets of a virtual
all must belongto a
ertain subset of
lasses and that (ii) no new
lass
anbe added to this subset without violating the standard rulesof the language. In our
ase these subsets
orrespond toJava pa
kages whi
h are sealed , as explained below. Whendealing with a sealed pa
kage it is safe to assume that allthe relevant
lasses (i.e., those that belong to the pa
kage)are available for analysis in advan
e.There are several important di�eren
es between our te
h-nique and the utilization of the final modi�er. The finalmodi�er is part of the Java programming language, whilesealing is external to the language de�nition. The finalkeyword disables further extension of a
lass or method,while sealing for
es su
h extensions to belong to other pa
k-ages. The final modi�er
an be used to resolve monomor-phi

alls to
lass methods, while sealing
an devirtualizepolymorphi

alls to
lasses and interfa
es. In general, itis not surprising that final redu
es polymorphism, but it

is quite unexpe
ted that a se
urity feature applied during
lass-loading has su
h an e�e
t.The usage of the final modi�er leaves enough room forother devirtualization te
hniques. Spe
i�
ally, our approa
hleads to a signi�
ant amount of additional safe devirtual-ization. Hen
eforth, the term virtual
all denotes
alls tovirtual non-final methods.
3.1 Sealed PackagesIn Java, every
lass belongs to one spe
i�
 pa
kage. Ea
hpa
kage
an have, as members, several
lasses whi
h are usu-ally logi
ally and fun
tionally related. The
lasses of pa
k-ages
an be aggregated into one JAR (Java AR
hive) �le,together with additional information. Several JAR �les anddire
tories usually apply when a Java program is exe
uted,as spe
i�ed by the \
lass-path". During exe
ution, when a
lass is referen
ed for the �rst time, the Java virtual ma
hine(JVM) sear
hes the appli
able JAR �les and dire
tories forthe desired
lass.Starting with version 1.2 of the Java Software DevelopmentKit (SDK 1.2.2 [34℄), Java pa
kages that reside inside JAR�les
an be sealed. If a pa
kage is sealed, all
lasses de�ned inthat pa
kage must originate from the same JAR �le, other-wise an ex
eption is thrown (\java.lang.Se
urityEx
eption").When a pa
kage is sealed inside a JAR �le we are
ertainthat every appli
ation will either load all the
lasses thatbelong to this pa
kage from this JAR �le, or not load any.It is not unreasonable to expe
t that many pa
kages will besealed. All standard
ore Java pa
kages in the Java 2 run-time library rt.jar are sealed ex
ept for two [34℄. The origi-nal motivation to seal pa
kages was to help enfor
e se
urityand
onsisten
y within a version. Grouping together setsof
lass �les is also very important for inter-
lass analysis.To ensure the persisten
e of su
h analysis it is importantto dete
t
hanges made to the pa
kage (e.g., modi�
ationand removal of existing
lasses, insertion of new
lasses, un-sealing the pa
kage). This is provided for in the form ofJAR-�le signing and versioning, whi
h are also available inSDK 1.2.2.Currently Java provides sealing only of individual pa
kages.It is possible to seal an entire JAR �le, thereby sealing allits pa
kages (unless stated otherwise). However, nothingbinds two sealed pa
kages together, even if they belong tothe same JAR �le. An appli
ation
an load all
lasses ofone sealed pa
kage p1 from a
ertain JAR �le and load nonefrom another sealed pa
kage p2, if p2 is available at a lo
a-tion earlier in the
lass-path. Providing the ability to sealseveral pa
kages together, may in
rease the potential for safedevirtualization in the future.Sealing a pa
kage provides the �rst ingredient of identifyingsealed
alls, by de�ning a set of
lasses to whi
h no addi-tional
lass
an be in
luded. The other ingredient, provingthat all the targets of a virtual
all must belong to su
h asubset, is presented in the next subse
tion.
3.2 The Default (package) ModifierThe a

ess restri
tions imposed by the default (pa
kage) a
-
ess modi�er of
lasses, interfa
es and methods
an be used

to prove that all the targets of a virtual
all must belong toone spe
i�
 pa
kage. A
all to a virtual method m of
lass
1 (denoted by
1::m)
an only target methods that overridemethod m. Method
2::m
an override method
1::m onlyif
2 extends
1 and has a

ess to
1::m. The a

ess and ex-tension
an be either dire
t or indire
t. There is one ex
ep-tion to the above rule des
ribed later, where
2::m overrides
1::m even though
2 does not extend
1.Java has several
lass and method modi�ers, whi
h are rel-evant to our analysis. In this do
ument, the term \
lass"refers to both
lasses and interfa
es, unless stated other-wise. A
lass
an be de
lared publi
, in whi
h
ase it
anbe dire
tly extended by
lasses from any pa
kage (providedit is not de
lared final). Classes whi
h are not de
laredpubli

an be dire
tly extended only by
lasses of the samepa
kage, and will be referred to as pa
kaged
lasses. Themethods of a
lass
an be de
lared publi
, prote
ted, orprivate; the methods of an interfa
e are impli
itly de
laredpubli
. Publi
 and prote
ted methods
an be a

essed fromoutside the pa
kage. Private methods
an be a

essed onlyfrom within the same
lass and
annot be overridden (theyare impli
itly final). Finally, a method that is not de
laredpubli
, prote
ted, or private, is dire
tly a

essible onlyfrom within its pa
kage, and will be referred to as a pa
kagedmethod.Pa
kaged
lasses and methods
an be dire
tly extended anda

essed only from within their pa
kage, but they mightbe extended and a

essed indire
tly from other pa
kagesthrough transitivity. For example, a pa
kaged
lass
1
anhave a dire
t publi
 sub
lass
2 within the same pa
kage. Itis now possible for a
lass
3 from a di�erent pa
kage to di-re
tly extend
lass
2, thereby indire
tly extending
lass
1.Similar s
enarios enable indire
t a

ess to pa
kaged methodsfrom outside their pa
kage. The potential of su
h indire
textension and a

ess enables the targets of a
all to a pa
k-aged method to belong to di�erent pa
kages.There is one spe
ial
ase in Java where a method of a
lass
2::m
an override a method of an interfa
e
1::m although
2 does not implement
1 (see [19, pages 166{167℄). Thishappens when another \
ombining"
lass (
3) implementsinterfa
e
1, extends
lass
2, and inherits method
2::m asan overriding implementation for
1::m. If
1 is a pa
kagedinterfa
e and
2 belongs to a di�erent pa
kage, we obtainanother
ase of inter-pa
kage overriding.It is thus possible to �nd all the methods that overridemethod
1::m by s
anning the sub
lasses of
1, and o

a-sionally examining super
lasses of su
h sub
lasses. The al-gorithm presented in the next se
tion identi�es sealed
allsby
he
king if the
alled method is a

essible and if its
lass
an be extended, either dire
tly or indire
tly from outsidetheir pa
kage.
4. IDENTIFYING SEALED CALLSThis se
tion presents an algorithm for identifying sealed
alls, and for providing a
omplete (
onservative) set of tar-gets for ea
h sealed
all. Aggressive inter-pro
edural analy-sis and optimization
an be applied safely to su
h
alls.Calls are
ategorized by the algorithm as being sealed
alls

based on information related only to the
alled method.Thus, the algorithm a
tually identi�es sealed methods |methods that
an be
alled only from within the same pa
k-age, where ea
h su
h
all is guaranteed to be a sealed
all. Itis possible to mark non-overridden sealed methods final, orsuggest su
h de
larations to the programmer, as proposedby Jax [36℄.A detailed des
ription of the algorithm is given in Subse
-tion 4.1. Our algorithm is based on a
lass hierar
hy graphof a single sealed pa
kage, without taking into a

ount anyout-of-pa
kage information, as explained in Subse
tion 4.2.
4.1 The AlgorithmConsider a
all to method m of
lass or interfa
e
, denotedby
::m. The following two steps determine whether or notthe
all is a sealed
all. First, the
lasses and interfa
eswhi
h belong to the pa
kage of
 are analyzed and their hi-erar
hi
al inheritan
e relationships are re
orded in the formof a Class Hierar
hy Graph (CHG). Next, a standard sear
hfor all methods overriding method
::m is performed withinthe pa
kage (based on the CHG) to determine if method
::m
an be overridden by methods from other pa
kages.The
all is a sealed
all if and only if we have veri�ed thatall overriding methods of
::m must be
on�ned to
's pa
k-age.The sub
lasses of
 that
an potentially override method mor inherit su
h an overriding implementation from a super-
lass are traversed along this sear
h. These
lasses are thesub
lasses d that extend
lass
 (or implement interfa
e
)dire
tly or indire
tly, with the ex
eption that if a
lass de-
lares method m as final all its sub
lasses are exempted.The sear
h is aborted if a publi
 non-final
lass d is foundthat rede
lares method m as publi
 or prote
ted and notfinal, or inherits su
h a de
laration from a super
lass. Inthis
ase, the original
all to
::m is not a sealed
all be
ause
lass d
an be extended by a
lass e from another pa
kageand e will be able to override
::m. If no su
h
lass d isfound, the
all to
::m is a sealed
all.Figure 1 presents an implementation for su
h an algorithmthat determines whether a
all to
::m is a sealed
all ornot. Gathering the targets of a sealed
all is a simple partof our algorithm, and has been omitted for
larity. The twomethodIsSealed fun
tions handle the
ases where
 is a
lassor an interfa
e. The fun
tion methodIsExposed re
ursivelys
ans the inheritan
e tree rooted at the given
lass, anddetermines if the given method
an be overridden from adi�erent pa
kage. Code related to the
he
kRoots
ag isexplained in the next subse
tion.
4.2 Package Based Class Hierarchy GraphOur underlying assumption is that the
lasses of a singlesealed pa
kage are available for analysis, and nothing
anbe assumed about
lasses of other pa
kages. Therefore theanalysis for building the CHG of a pa
kage must be basedonly on information internal to the pa
kage. However, itmay be ne
essary to examine
lasses of other pa
kages inorder to dete
t
ertain inheritan
e relations in the CHG. Forinstan
e, suppose a
lass of pa
kage p extends a
lass fromanother pa
kage, whi
h in turn extends a
lass of pa
kagep. This way the former
lass indire
tly extends the latter

Figure 1: Algorithm for Identifying Sealed Methodsboolean methodIsSealed(
lass
, method m) f// 1. Che
k if
 inherits m from another pa
kage
lass super
while super does not de
lare m fsuper the super
lass of superif super does not belong to analyzed pa
kagereturn falseg// 2. Che
k if
 inherits m as �nalif super de
lares m �nalreturn true// 3. Che
k re
ursively if
 or a sub
lass of
 exposes mglobal boolean
he
kRoots falseboolean mIsPubli
OrProte
ted (super de
lares m publi
or prote
ted)if methodIsExposed(
, m, mIsPubli
OrProte
ted)return false// 4. If needed
he
k all
lasses re
ursively starting from rootsif
he
kRootsforea
h
lass root whose super
lass is not in pa
kage doif methodIsExposed(root, m, false)return falsereturn truegboolean methodIsSealed(interfa
e i, method m) fif i is a publi
 interfa
e // m is impli
itly a publi
 methodreturn falseforea
h
lass (interfa
e)
 implementing (extending) i doif not methodIsSealed(
, m)return falsereturn truegboolean methodIsExposed(
lass
, method m,boolean mIsPubli
OrProte
ted) fif
 is a �nal
lass or de
lares m �nalreturn falseif
 de
lares mmIsPubli
OrProte
ted (
 de
lares m publi
 or prote
ted)if
 is a publi

lass ^ mIsPubli
OrProte
tedreturn trueforea
h sub
lass dire
tly extending
 doif methodIsExposed(sub
lass, m, mIsPubli
OrProte
ted)return trueif
 is a publi

lass // and m is a pa
kaged method
he
kRoots truereturn falseg

lass and both belong to pa
kage p, even though no inheri-tan
e relationship is visible by looking only at
lasses insidepa
kage p. One must examine the intermediate
lass whi
hbelongs to the other pa
kage in order to
ompletely deter-mine the inheritan
e relationship. A
onservative way to
ope with this de�
ien
y is to assume that any two
lassesin the pa
kage that
an possibly extend one another through
ross-pa
kage inheritan
e, do so.Here is a s
enario involving
ross-pa
kage inheritan
e whi
his relevant to identifying sealed
alls. Suppose a pa
kage p
ontains two publi
 non-final
lasses
1 and
3, with noinheritan
e relations visible within p. Suppose
1 de
lares apa
kaged method m, and
3 de
lares a similar method m aspubli
 or prote
ted. Now it is possible for a
lass
2 froma pa
kage other than p to extend
1 and be extended by
3. This enables
3::m to \smuggle"
1::m out of pa
kage p,sin
e it overrides
1::m and
an be overridden from outsidep. This is however the only relevant s
enario:
1 must bepubli
 in order to be extensible by a
lass
2 from outsidep and
1::m must originally be pa
kaged for otherwise it
anbe overridden dire
tly by methods of other pa
kages. Being
on�ned to pa
kage p, our analysis
onservatively assumesthat su
h a
lass
2 always exists. Methods of interfa
es
an-not parti
ipate in su
h s
enarios sin
e they are all publi
.The algorithms presented in Figure 1
ope with potential
ross-pa
kage inheritan
e in the
onservative manner ex-plained above. Classes whose dire
t super
lasses do not be-long to the analyzed pa
kage are identi�ed as root
lasses.The sear
h for all methods overriding
::m signals the poten-tial for
ross-pa
kage extension when it en
ounters a publi

lass
1 whi
h de
lares m as pa
kaged and non-final or in-herits su
h a de
laration. If su
h a signal is raised, all root
lasses (ex
ept for the root whi
h is a super
lass of
) are
onsidered as indire
t extensions (
3) of
 (see
ode relatedto the
he
kRoots
ag in Figure 1).Regarding the
omplexity of our algorithm, �rst note thatthe CHG of a pa
kage
an be
onstru
ted in time O(N+M)where N is the number of
lasses and interfa
es, and M isthe number of inheritan
e edges. Given the CHG of thepa
kage, our algorithm visits ea
h
lass and interfa
e on
eat the most (usually only a \shallow" inheritan
e tree isvisited), taking a
onstant time per visit, in order to identifya sealed method. Overall, per method, the exe
ution timeof the algorithm is at most linear in the size of the CHG ofthe analyzed pa
kage.
5. EXPERIMENTSThe algorithm for identifying sealed
alls was implementedand tested on several ben
hmarks. Calls that are identi�edas sealed
alls
an be devirtualized safely, for instan
e by
onverting invokevirtual to invokespe
ial as suggestedby Jax [36℄. Sealed
alls to methods of interfa
es may bene�tfrom a similar strength-redu
tion optimization, by
onvert-ing invokeinterfa
e to invokevirtual as proposed by theSable resear
h group [17℄, however only few su
h
andidateswere found in our experiments. The potential performan
eimprovements of eliminating virtual fun
tion
alls in C++programs have been studied by several resear
hers [9, 2, 15,30℄. In addition to redu
ing the overhead of dynami
 dis-pat
h by devirtualization, monomorphi
 sealed
alls
an be

safely inlined without a guard. The potential bene�t of su
hdire
t inlining in Java is reported by Agesen and Detlefs [13,Table 6℄.In this se
tion we present experimental results showing thata signi�
ant per
entage of the virtual
alls that reside in-side
ertain library and appli
ation pa
kages are identi�edas sealed
alls by our algorithm. An interesting observationis that a very high per
entage of the
alls that were foundto be sealed have exa
tly one possible target, and are there-fore good
andidates for safe dire
t inlining. These resultsindi
ate the strong potential of using sealed
alls to enhan
eanalysis and optimization of Java programs.Subse
tion 5.1 des
ribes the ben
hmarks that were used.Subse
tion 5.2 reports the number of sealed
all sites foundin the ben
hmark pa
kages, and Subse
tion 5.3 presents thenumber of times sealed
alls in appli
ation pa
kages wereexe
uted while running the ben
hmarks, a

ording to pro-�ling data. Remarks regarding the experiments appear inSubse
tion 5.4.
5.1 BenchmarksTable 1 des
ribes the Java programs used in the exper-iments. In ea
h ben
hmark we
onsidered all the pa
k-ages that
ontain a signi�
ant amount (100) of virtual
allsto non-final methods (for Jigsaw the threshold was 300).Only su
h
alls are relevant to devirtualization analysis.The runtime library rt.jar from Java 2 JDK release 1.2 was
hosen be
ause all its pa
kages ex
ept for two are known tobe sealed, and be
ause it is fairly large, diverse, and highlyreusable. Optimization improvements made to rt.jar havegreat potential impa
t on the performan
e of other Javaprograms.Jigsaw [25℄ and pBob [5℄ are two large, multi-pa
kaged serverappli
ations. Jigsaw is an obje
t-oriented web server ofW3C implemented in Java. Portable business obje
t ben
h-mark (pBOB) is a kernel of business logi
 inspired by theTPC-C ben
hmark spe
i�
ation2. SPECjvm98 [32℄
an-didates and ben
hmarks were
hosen to represent
lient-oriented programs. The analysis of appli
ation ben
hmarksassumes that all pa
kages are sealed. Note that this is avalid assumption whi
h does not
ause se
urity ex
eptionsfor these appli
ations.
5.2 Static CountsTables 2, 3, and 4 present stati
 measurements regarding the
alls that reside inside rt.jar and the appli
ation pa
kagestested. For ea
h pa
kage, we
ounted the number of virtual
all sites to non-final methods that appear in the pa
kage(
olumn Vs). We also
ounted how many of these virtual
alls were intra-pa
kage
alls, where both
aller and the orig-inal
allee belong to the same pa
kage; only su
h
alls are
andidates to be sealed
alls (
olumn Ps). The per
entageof virtual
alls that were identi�ed as sealed, and that werealso identi�ed as monomorphi
 (a

ording to our algorithm)are presented next (
olumns Ss, Ms respe
tively). The ta-2In a

ordan
e with the TPC's fair use poli
y we note thatpBOB deviates from the TPC-C spe
i�
ation and is not
omparable to any oÆ
ial TPC result.

Table 1: Des
ription of ben
hmark programsType Ben
hmark Vt Des
riptionLibrary rt.jar 52909 Java 2 JDK release 1.2Server Jigsaw 8322 W3C's web server,version 2.0.3pBob 1390 Transa
tion pro
essingben
hmarkSPECjvm98 java
 2177 Java byte
ode
ompilerBen
hmarks jess 828 Java expert shellsystemja
k 735 Parser generator
he
k 238 Tests JVM featuresdb 115 Sear
h and modifya databasempegaudio 115 De
ompress audio �lesSPECjvm98 nih 1684 Image manipulationCandidates raytra
e 869 Graphi
s raytra
ermpeg 260 MPEG video de
odingsi 208 Interpreter for a simplelanguage
st 193 java/util
lass exer
isertmix 155 Dining philosophersri
hards 114 Threads running �veOS simulator versionsdeltablue 105 Deltablue algorithmVt Total number of Virtual
alls to non-final methodsTable 2: Stati

ounts for \best" rt.jar pa
kagesPa
kage Vs Ps Ss Mssun/audio 324 65.7 59.3 55.2sun/awt/Albert 1202 89.5 45.5 44.8javax/swing/text/rtf 592 37.8 37.8 31.2java/awt/datatransfer 114 50.0 31.6 31.6sun/jdb
/odb
 1076 89.9 27.0 27.0javax/swing/text/html/parser 377 73.2 26.3 26.3javax/swing/tree 1113 73.9 25.9 25.9sun/se
urity/tools 1267 22.7 22.7 22.7sun/applet 688 39.5 20.5 20.5Vs Number of Virtual
allsPs Per
entage of
alls in Vs to methods of same Pa
kageSs Per
entage of
alls in Vs identi�ed as SealedMs Per
entage of sealed and Monomorphi

alls in Vsbles are sorted a

ording to the per
entage of sealed
alls(
olumn Ss), in des
ending order.There are 64 pa
kages in rt.jar with at least 100 virtual
allsto non-final methods, of whi
h all but one are known tobe sealed. On average, 40% of the virtual
alls in thesepa
kages are intra-pa
kage
alls. More than half of thesepa
kages
ontain at least 5% sealed
alls, where the totalaverage of sealed
alls is 8.5%. Furthermore, on averageabout 7.9% of the virtual
alls are sealed and monomorphi
a

ording to our algorithm. Table 2 shows 9 of the pa
kagesthat
ontain the highest per
entage of sealed
alls (at least20%).Regarding tables 3 and 4, roughly half of all the virtual
alls that were analyzed are intra-pa
kage
alls. Thus thereis a large potential for sealing many virtual
alls. In gen-eral, the results obtained by our algorithm show that thereis a large varian
e in the number of sealed
alls per pa
k-age | in some pa
kages nearly all (94.8%) virtual
alls aresealed, whereas in other pa
kages less than 1% of the virtual
alls are sealed
alls. For example, in pa
kage ri
hards/daithe entire
lass hierar
hy is pa
kaged, ex
ept for the main

Table 3: Stati

ounts in pBob and Jigsaw pa
kagesPa
kage Vs Ps Ss MspBob (pre�x =
om/ibm/sf/)BOB/infra/Colle
tions 138 97.1 15.2 15.2BOB 1129 45.9 13.8 13.6BOB/infra/Fa
tory 123 77.2 0.0 0.0Jigsaw (pre�x = org/w3
/)
vs 393 48.1 28.0 27.7www/http 735 77.0 14.3 14.3tools/resour
es/store 362 31.5 12.2 12.2www/proto
ol/http 407 45.0 11.3 10.8jigadm/editors 1491 20.1 8.5 8.5tools/widgets 491 25.9 7.1 6.7jigsaw/frames 950 25.1 3.7 3.7jigsaw/servlet 724 29.1 3.2 3.2jigsaw/�lters 430 12.3 2.8 2.8jigsaw/admin 452 40.0 2.4 2.4www/proto
ol/http/
a
he 502 36.9 1.2 1.2jigsaw/http 642 33.2 0.9 0.9tools/resour
es 743 78.6 0.4 0.4Average 45.2 7.8 7.7Table 4: Stati

ounts in ben
hmark pa
kagesPa
kage Vs Ps Ss MsSPECjvm98 Ben
hmarksmpegaudio 115 65.2 65.2 49.6
he
k 238 53.8 50.4 50.0jess/jess 828 84.7 36.0 36.0java
 2177 77.4 10.8 6.2ja
k 735 30.1 9.4 9.4db 115 24.3 1.7 1.7SPECjvm98 Candidatesri
hards/dai 114 95.6 94.7 93.9deltablue 105 86.7 85.7 50.5tmix 155 62.6 62.6 38.7si 208 64.4 58.2 58.2nih 1684 57.1 53.9 43.2
st 193 68.9 12.4 12.4mpeg 260 74.6 1.5 1.5raytra
e 869 98.2 0.0 0.0Average 67.4 38.8 32.2(Ri
hards)
lass whi
h is publi
, resulting in a high per
ent-age of sealed
alls. On the other extreme, in pa
kages ray-tra
e and
om/ibm/sf/BOB/infra/Fa
tory all
lasses andmethods are publi
, leaving no potential for sealed
alls.In pa
kage org/w3
/tools/resour
es, all 56
lasses and 407methods are publi
 ex
ept for two
lasses and two methodswhi
h are pa
kaged, resulting in very few sealed
alls.For some rt.jar and SPECjvm98 pa
kages, almost every vir-tual intra-pa
kage
all is identi�ed by our algorithm as asealed
all, leaving little prospe
t for more powerful algo-rithms. Overall, for most pa
kages analyzed in both rt.jarand appli
ation ben
hmarks, nearly all sealed
alls are shownto be monomorphi
, a fa
t whi
h makes them good
andi-dates for aggressive optimizations su
h as dire
t inlining.
5.3 Dynamic CountsTable 5 presents dynami
 measurements regarding
alls thatwere exe
uted while running the SPECjvm98
andidates andben
hmarks. These programs were exe
uted with size `10'to produ
e dynami
 pro�les. Therefore, the results do notfollow the oÆ
ial SPEC rules.

Table 5: Dynami

ounts in ben
hmark pa
kagesBen
hmark Vd Pd Sd MdSPECjvm98 Ben
hmarksmpegaudio 26650 99.8 6.2 6.1
he
k 68 29.8 1.2 1.2jess 20789 93.7 5.9 5.9java
 3416 62.0 14.4 9.6ja
k 3962 39.2 17.5 17.5db 326 22.5 0.0 0.0SPECjvm98 Candidatesri
hards 88031 100.0 100.0 88.2deltablue 46681 100.0 100.0 71.1tmix 71834 99.1 98.8 76.0si 10973 47.3 33.0 33.0nih 5 18.0 3.5 3.5
st 2124 21.6 21.1 21.1mpeg 21987 67.0 0.0 0.0raytra
e 60051 100.0 0.0 0.0Average 64.3 28.7 23.8Vd Number of invoked Virtual
alls (in thousands)Pd Per
entage of
alls in Vd to methods of same Pa
kageSd Per
entage of
alls in Vd identi�ed as SealedMd Per
entage of sealed and Monomorphi

alls in VdDynami
 measurements are not presented for pBob and Jig-saw, due to their highly
on�gurable and intera
tive na-ture. We
onsidered all
alls that originated from appli
a-tion pa
kages, sin
e they usually a

ounted for most of theexe
uted
alls. For ea
h ben
hmark we
ounted how manyvirtual
alls to non-final methods were exe
uted (
olumnVd). Columns Pd, Sd and Md are analogous to the stati
measurements (Ps, Ss, Ms) in Tables 2, 3 and 4.Of all virtual
alls exe
uted, a high per
entage (about 64%)were intra-pa
kage
alls, and more than 28% were foundto be sealed
alls by our algorithm. On the average, whilerunning a ben
hmark, our algorithm identi�ed as sealed
allsnearly 45% of the intra-pa
kage
alls that are exe
uted, withsome ben
hmarks rea
hing
lose to 100%. As with the stati

ounts (see Se
tion 5.2), for many ben
hmarks all sealed
alls are also shown to be monomorphi
.The varian
e in the dynami
 results is huge. For threeben
hmarks (ri
hards, deltablue and tmix) almost all (morethan 98.8%) virtual
alls are identi�ed as sealed. On theother extreme, in four ben
hmarks (
he
k, db, mpeg andraytra
e) a very small per
entage (less than 1.2%) of thevirtual
alls were identi�ed as sealed.Several ben
hmarks (
he
k, nih, ja
k and db) exe
uted asigni�
ant number of
alls originating from JDK pa
kages.In these
ases, about 6.6% of the virtual
alls from the JDKwere identi�ed as sealed and monomorphi
.
5.4 Statistical RemarksThe pro�ling data used (the standard java -prof tool) re-ports the number of times a
ertain method
alls anothermethod3. If one method
ontains several
all-sites, ea
h po-tentially targeted at the same target method, then the dis-tribution of the method-to-method frequen
y among these
all-sites is not known to us. However, there was no prob-3Note that for
alls to or from native methods, the
alleeor
aller were reported as unknown. Su
h
ases were verys
ar
e and had no signi�
ant e�e
t on the statisti
s.

lem to determine the a

urate invo
ation
ount for almostall sealed
alls that appear in the ben
hmarks.In order to build the CHG of a pa
kage we analyze the byte-
odes (the invokevirtual and invokeinterfa
e byte
odesin parti
ular) to lo
ate virtual
all sites, and use the
allee-
lass annotated at ea
h
all-site. There may be a di�eren
ebetween the
allee
lass that appears in the Java sour
e
ode,and the
allee
lass annotated in the byte
ode. This happenswhen the original
allee
lass does not
ontain a de
larationof the
alled method. In su
h
ases, the annotated
allee
lass is a super
lass of the original
allee
lass that
ontainsthe required de
laration. It is
onservative to use the anno-tated
allee
lass (see [13, page 264℄ for further details).
6. CONCLUDING REMARKSUsing the default a

ess permission of pa
kaged
lasses, in-terfa
es and methods together with the ability to seal Javapa
kages, we are able to determine
omplete sets of tar-gets for
ertain
alls. In this paper we have proposed atype of Class-Hierar
hy Analysis that identi�es sealed
alls,whi
h for some
ases identi�es nearly all intra-pa
kage
allsas sealed
alls. In some SPECjvm98 pa
kages, almost allintra-pa
kage
alls are identi�ed by our algorithm as sealed,and a signi�
ant number of sealed
alls are invoked whilerunning these ben
hmarks. In the widely used Java 2 rt.jarlibrary, about 10% of the pa
kages
ontain a signi�
ant per-
entage of sealed
alls (20{60%), and in more than halfof the pa
kages, at least 5% of all virtual
alls are sealed
alls. For many pa
kages all sealed
alls are also shown tobe monomorphi
.Our analysis supports inter-pro
edural analyses su
h as im-mutability and es
ape analysis, and enables aggressive opti-mizations su
h as dire
t inlining. It is eÆ
ient and stati
in nature | it
an support both dynami

ompilers byen
oding the results as byte
ode annotations, and stati
pre-runtime
ompilers or byte
ode-to-byte
ode transform-ers. The entire analysis and optimizations
an be validatedinstantly at runtime when the pa
kage is �rst loaded from itsJAR �le by verifying the seal, version, and signature. Thereis no need for
omplex dependen
e models and me
hanismsthat
he
k multiple �les and timestamps, or for sophisti
atedre
ompilation te
hniques.Our algorithm a
tually identi�es sealed methods | meth-ods that
an be
alled only from within the same pa
kage,where ea
h su
h
all is guaranteed to be a sealed
all. Thisanalysis may be enhan
ed in several possible ways. Addi-tional
alls might be sealed by
onsidering the spe
i�

on-text of ea
h individual
all site: data-
ow analysis
an beused to better determine the possible types of the re
eiverobje
t. Re
ently, Sreedhar, Burke and Choi [33℄ presenteda framework whi
h addresses similar issues using data
owanalysis. Su
h te
hniques are signi�
antly more
omplexthan our proposed CHA-type algorithm. Moreover our ex-periments show that in many
ases our algorithm is ableto identify most of the
alls that
an potentially be sealed,leaving limited prospe
ts for more powerful tools.Another way to try and enhan
e our analysis is to use live-ness information (as in Rapid-Type Analysis [4℄). For in-stan
e, pa
kaged
lasses or
lasses whi
h do not have publi

or prote
ted
onstru
tors
an be
onsidered live only ifthey are instantiated within the pa
kage. There is how-ever little hope of sealing additional
alls this way, sin
ea publi

lass, that prevents a
all from being sealed a
-
ording to our algorithm, must be
onsidered live (if it hasa publi
 or prote
ted
onstru
tor). Liveness information
an potentially redu
e the number of targets a sealed
allis known to have. However, our algorithm shows that formany SPECjvm98 and rt.jar pa
kages, all sealed
alls aremonomorphi
.A related problem is to try and identify all possible
allersof a given method, whi
h is also very important for inter-pro
edural optimizations (e.g., inter-pro
edural redundan
yelimination, dead method removal [36℄). One
ondition thatis suÆ
ient and eÆ
ient for this purpose is to
he
k if themethod is a pa
kaged method in a sealed and signed pa
kage.Sealed methods also belong to this
ategory, sin
e they
anbe
alled only from within their pa
kage (and from native
ode or via re
e
tion).
7. ACKNOWLEDGEMENTSThe authors would like to thank Joseph (Yossi) Gil for hismany
onstru
tive suggestions, Bilha Mendelson, Sara Poratand Daniel Hi
ks for helpful dis
ussions, Chani Sa
haren foruseful editorial remarks, and the anonymous reviewers ofOOPSLA and ECOOP for their feedba
k.
8. REFERENCES[1℄ O. Agesen and U. H�olzle. Type feedba
k vs.
on
retetype inferen
e: A
omparison of optimizationte
hniques for obje
t-oriented languages. InPro
eedings of the 10th Annual Conferen
e onObje
t-Oriented Programming Systems, Languages andAppli
ations (OOPSLA), pages 91{107, O
t 1995.[2℄ G. Aigner and U. H�olzle. Eliminating virtual fun
tion
alls in
++ programs. In Pro
eedings of the 10thEuropean Conferen
e on Obje
t-OrientedProgramming (ECOOP), pages 142{166, July 1996.[3℄ A. Azevedo, A. Ni
olau, and J. Hummel. Javaannotation-aware just-in-time (ajit)
ompilationsystem. In Pro
eedings of the ACM 1999 Conferen
eon Java Grande, pages 142{151, June 1999.[4℄ D. F. Ba
on and P. F. Sweeney. Fast stati
 analysis of
++ virtual fun
tion
alls. In Pro
eedings of the 11thAnnual Conferen
e on Obje
t-Oriented ProgrammingSystems, Languages and Appli
ations (OOPSLA),pages 324{341, O
t 1996.[5℄ S. J. Baylor, M. Devarakonda, S. Fink, E. Gluzberg,M. Kalantar, P. Muttineni, E. Barsness, S. Munroe,R. Arora, , and R. Dimpsey. Java server ben
hmarks.IBM Systems Journal, 39(1):21{56, 2000.[6℄ B. Blan
het. Es
ape analysis for obje
t orientedlanguages, appli
ation to java. In Pro
eedings of the1999 ACM SIGPLAN Conferen
e on Obje
t-OrientedProgramming Systems, Languages and Appli
ations(OOPSLA), pages 20{34, Nov 1999.[7℄ Z. Budimli�
 and K. Kennedy. Prospe
ts for s
ienti�

omputing in polymorphi
, obje
t-oriented style. In

Pro
eedings of the 9th SIAM Conferen
e on ParallelPro
essing for S
ienti�
 Computing, Mar
h 1999.[8℄ M. G. Burke, J. Choi, S. Fink, D. Grove, M. Hind,V. Sarkar, M. J. Serrano, V. C. Sreedhar,H. Srinivasan, and J. Whaley. The jalape~no dynami
optimizing
ompiler for java. In Pro
eedings of theACM 1999 Conferen
e on Java Grande, pages129{141, June 1999.[9℄ B. Calder and D. Grunwald. Redu
ing indire
tfun
tion
all overhead in
++ programs. InConferen
e Re
ord of the 21st ACMSIGPLAN-SIGACT Symposium on Prin
iples ofProgramming Languages (POPL), pages 397{408, Jan1994.[10℄ J. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, andS. Midki�. Es
ape analysis for java. In Pro
eedings ofthe 1999 ACM SIGPLAN Conferen
e onObje
t-Oriented Programming Systems, Languages andAppli
ations (OOPSLA), pages 1{19, Nov 1999.[11℄ J. Dean, D. Grove, and C. Chambers. Optimization ofobje
t-oriented programs using stati

lass hierar
hyanalysis. In W. Oltho�, editor, Pro
eedings of the 9thEuropean Conferen
e on Obje
t-Oriented Programming(ECOOP), pages 77{101. Springer-Verlag, Aug 1995.[12℄ G. DeFouw, D. Grove, and C. Chambers. Fastinterpro
edural
lass analysis. In Pro
eedings of the25th ACM SIGPLAN-SIGACT Symposium onPrin
iples of Programming Languages (POPL), pages222{236, Jan 1998.[13℄ D. Detlefs and O. Agesen. Inlining of virtual methods.In R. Guerraoui, editor, Pro
eedings of the 13thEuropean Conferen
e on Obje
t-Oriented Programming(ECOOP), pages 258{278. Springer-Verlag, June 1999.[14℄ J. Dolby. Automati
 inline allo
ation of obje
ts. InPro
eedings of the 1997 ACM SIGPLAN Conferen
eon Programming Language Design andImplementation (PLDI), pages 7{16, May 1997.[15℄ K. Driesen and U. H�olzle. The dire
t
ost of virtualfun
tion
alls in
++. In Pro
eedings of the 11thAnnual Conferen
e on Obje
t-Oriented ProgrammingSystems, Languages and Appli
ations (OOPSLA),pages 306{323, O
t 1996.[16℄ N. Feinberg, S. E. Keene, R. O. Mathews, and P. T.Withington. The Dylan Programming Book.Addison-Wesley, 1997.[17℄ E. Gagnon and L. Hendren. Intra-pro
edural inferen
eof stati
 types for java byte
ode. Te
hni
al Report1999-1, Sable Resear
h Group, M
Gill University,Mar
h 1999.[18℄ J. Gil and A. Itai. The
omplexity of type analysis ofobje
t oriented programs. In Pro
eedings of the 12thEuropean Conferen
e on Obje
t-OrientedProgramming (ECOOP), pages 601{634, July 1998.[19℄ J. Gosling, B. Joy, and G. Steele. The Java LanguageSpe
i�
ation. Addison-Wesley, 1996.

[20℄ D. Grove, G. DeFouw, J. Dean, and C. Chambers.Call graph
onstru
tion in obje
t-oriented languages.In Pro
eedings of the 1997 ACM SIGPLANConferen
e on Obje
t-Oriented Programming Systems,Languages and Appli
ations (OOPSLA), pages108{124, O
t 1997.[21℄ D. P. Grove. E�e
tive Interpro
edural Optimization ofObje
t-Oriented Languages. PhD thesis, University ofWashington, 1998.[22℄ U. H�olzle, C. Chambers, and D. Ungar. Debuggingoptimized
ode with dynami
 deoptimization. InPro
eedings of the ACM SIGPLAN '92 Conferen
e onProgramming Language Design and Implementation(PLDI), pages 32{43, June 1992.[23℄ The java hotspot performan
e engine ar
hite
ture.Available at http://-www.javasoft.
om/produ
ts/hotspot/whitepaper.html,April 1999.[24℄ K. Ishizaki, M. Kawahito, T. Yasue, M. Takeu
hi,T. Ogasawara, T. Suganuma, T. Onodera,H. Komatsu, and T. Nakatani. Design,implementation, and evaluation of optimizations in ajust-in-time
ompiler. In Pro
eedings of the ACM 1999Conferen
e on Java Grande, pages 119{128, June1999.[25℄ Jigsaw - the w3
's web server. Available athttp://www.w3
.org/Jigsaw.[26℄ Jove super optimizing deployment environment forjava. Available athttp://www.instantiations.
om/jove/jovereport.htm.[27℄ S. S. Mu
hni
k. Advan
ed Compiler Design andImplementation. Morgan Kaufmann, 1997.[28℄ P. D. O'brien, D. C. Halbert, and M. F. Kilian. Thetrellis programming environment. In Conferen
ePro
eedings on Obje
t-Oriented Programming Systems,Languages and Appli
ations (OOPSLA), pages91{102, O
t 1987.[29℄ H. D. Pande and B. G. Ryder. Stati
 typedetermination for
++. In Pro
eedings of the SixthUsenix C++ Te
hni
al Conferen
e, pages 85{97, April1994.[30℄ S. Porat, D. Bernstein, Y. Fedorov, J. Rodrigue, andE. Yahav. Compiler optimization of
++ virtualfun
tion
alls. In Pro
eedings of the Se
ond Conferen
eon Obje
t-Oriented Te
hnologies and Systems(COOTS), pages 3{14, Jun 1996.[31℄ S. Porat, B. Mendelson, and I. Shapira. Sharpeningglobal stati
 analysis to
ope with java. In Pro
eedingsof CASCON `98 Conferen
e, pages 303{316, Nov 1998.[32℄ Spe
 jvm98 ben
hmarks. Available athttp://www.spe
.org/osg/jvm98, August 1998.[33℄ V. C. Sreedhar, M. Burke, and J. Choi. A frameworkfor interpro
edural optimization in the presen
e ofdynami

lass loading. In Pro
eedings of the ACM

SIGPLAN `00 Conferen
e on Programming LanguageDesign and Implementation (PLDI), pages 196{207,June 2000.[34℄ Sun Mi
rosystems. Java 2 Software Development Kitversion 1.2.2, July 1999. Available athttp://java.sun.
om/produ
ts/jdk/1.2/, See theredo
s/guide/extensions/spe
.html#sealing.[35℄ V. Sundaresan, L. Hendren, C. Raza�mahefa,R. Valle-Rai, P. Lam, E. Gagnon, and C. Godin.Pra
ti
al virtual method
all resolution for java.Te
hni
al Report 1999-4, Sable Resear
h Group,M
Gill University, Nov 1999.[36℄ F. Tip, C. La�ra, P. F. Sweeney, and D. Streeter.Pra
ti
al experien
e with an appli
ation extra
tor forjava. In Pro
eedings of the 1999 ACM SIGPLANConferen
e on Obje
t-Oriented Programming Systems,

Languages and Appli
ations (OOPSLA), pages292{305, Nov 1999.[37℄ Towerj3 - a new generation native java
ompiler andruntime environment. Available athttp://www.towerj.
om/produ
ts/-whitepapergnj.shtml and alsowhitepapers3.shtml.[38℄ R. Vall�ee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,and V. Sundaresan. Soot - a java byte
odeoptimization framework. In Pro
eedings of CASCON`99 Conferen
e, Nov 1999.[39℄ J. Whaley and M. Rinard. Compositional pointer andes
ape analysis for java programs. In Pro
eedings ofthe 1999 ACM SIGPLAN Conferen
e onObje
t-Oriented Programming Systems, Languages andAppli
ations (OOPSLA), pages 187{206, Nov 1999.

