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ABSTRACTDetermining the potential targets of virtual method invoa-tions is essential for inter-proedural optimizations of objet-oriented programs. It is generally hard to determine suhtargets aurately. The problem is espeially diÆult fordynami languages suh as Java, beause additional targetsof virtual alls may appear at runtime. Current mehanismsthat enable inter-proedural optimizations for dynami lan-guages, repeatedly validate the optimizations at runtime.This paper addresses this prediament by proposing a noveltehnique for onservative devirtualization analysis, whihapplies to a signi�ant number of virtual alls in Java pro-grams. Unlike previous work, our tehnique requires neitherwhole program analysis nor runtime information, and in-urs no runtime overhead. Our solution is very eÆient toompute and is based on a newly introdued, seemingly un-related seurity feature of Java �le arhives. On average, ouranalysis \seals" (safely devirtualizes) about 39% of the vir-tual alls (to non-�nal methods) that appear in SPECjvm98programs, and about 29% of the alls invoked while exeut-ing these programs. In the runtime library rt.jar, about 10%of the pakages ontain a signi�ant perentage (20{60%) ofsealed alls, with a total average of about 8.5%. Most ofthese alls are also shown to be monomorphi, a fat whihan be safely exploited by aggressive inter-proedural op-timizations suh as diret inlining. These results indiatethat our tehnique has a strong potential for enhaning theanalysis and optimization of Java programs.
Categories and Subject DescriptorsD.1.5 [Programming Tehniques℄: Objet-oriented Pro-gramming; D.3.2 [Programming Languages℄: LanguageClassi�ations|Java, Objet-oriented Programming ; D.3.4[Programming Languages℄: Proessors|Compilers, Op-timization, Run-time environments
General TermsLanguages, Performane

KeywordsJava, objet-oriented programming, inter-proedural anal-ysis, all devirtualization, method inlining, lass hierarhygraph, all graph, sealed pakage
1. INTRODUCTIONInter-proedural optimizations of objet-oriented programsare based on the determination of the potential targets ofvirtual method invoations. This is a hallenging problemespeially for dynami languages suh as JavaTM 1, beauseadditional targets of virtual alls may appear at runtime.In ertain languages the programmer an prohibit methodsfrom being overridden, thereby resolving alls to these meth-ods. Calls to suh \�nal" methods are not onsidered to bevirtual alls in this paper. Existing tehniques that deter-mine the targets of virtual alls in dynami languages eitherrestrit dynami lass loading (by relying on the user [36℄or by applying whole-program analysis [4℄), or init a run-time overhead. In addition, some solutions imply restri-tions on further optimizations and some require speial run-time mehanisms. An ideal solution should have no runtimeoverhead and restritions. So far, all tehniques fall short ofthis ideal.Our goal is to overome all these drawbaks by identifying anew type of alls in Java whose set of potential targets an bedetermined ompletely and expliitly in advane, even priorto runtime. More spei�ally, we say that a all is a sealedall if it appears inside a sealed Java pakage [34℄, and hasthe property that all its targets are guaranteed to belong tothe same pakage. Sealed alls an be identi�ed by analyz-ing single Java pakages, without relying on whole-programanalysis. Our analysis an be viewed as an appliation ofalmost whole program ompilation [7℄.Identifying sealed alls and their potential targets failitatesaggressive inter-proedural intra-pakage optimizations. Forexample, if a sealed all has only one potential target, it anbe inlined safely without any preonditions. In addition tothe immediate appliation to devirtualization and inlining,our analysis learly ontributes to other inter-proeduralanalyses and optimizations suh as immutability and esapeanalyses [6, 10, 13, 39℄, and objet inlining [7, 14℄. Our teh-nique an be implemented eÆiently and an support statiompilers, byteode-to-byteode transformers, or dynamiompilers by using byteode annotations [3, 36℄. Sine our1Java is a trademark of Sun Mirosystems, In.



analysis is applied to Java byteode, it an be used for awide variety of languages that produe suh byteode.The results obtained by our tehnique indiate a signi�antpotential for pratial improvements in analyses and opti-mizations. In about half of the pakages in the runtime li-brary rt.jar (whose pakages are known to be sealed exeptfor two), 5{60% of the virtual alls (to non- final methods)are sealed alls aording to our analysis. On average, our al-gorithm identi�es nearly 39% of all virtual alls that appearin pakages of SPECjvm98TM [32℄ benhmarks and andi-dates as sealed alls (assuming pakages are sealed), withhalf of the pakages soring between 50% and 95%. Almost29% of all virtual alls invoked while running these benh-marks were identi�ed as sealed alls. For many pakages,all sealed alls are shown to have only one possible target,whih makes them good andidates for diret inlining.The rest of this paper is organized as follows. Setion 2provides a bakground and desribes related work on de-virtualization of alls in dynami languages. Setion 3 de-�nes sealed alls, and Setion 4 desribes an algorithm foridentifying sealed alls and their possible targets. Setion 5provides data on the extent of prevalene of sealed alls.Conlusions and diretions for future work are presented inSetion 6.
2. BACKGROUND

2.1 The Devirtualization ProblemThe exeution time of programs an be redued onsiderablyby using ompiler optimizations whih better exploit hard-ware resoures [27℄. Programs that onsist of many shortproedures require inter-proedural optimizations in orderto obtain eÆient optimized ode. One of the most relevantinter-proedural optimization is inlining, whih an improveperformane by reduing the overhead of alls and by in-reasing opportunities for other optimizations. In order toperform inlining and other inter-proedural optimizations itis essential to identify the targets of alls.Objet-oriented programs promote the use of short meth-ods to enapsulate funtionality and as a means of modu-larity and abstration. Suh methods are usually virtual, afat whih ompliates inter-proedural optimizations. Eahtime a all to a virtual method is exeuted, the delaredmethod or one of several methods whih override it is atu-ally invoked, depending on the dynami type of the reeiverobjet. The ability to identify in advane the potential tar-gets of a virtual all, known as all devirtualization, is ruialfor optimizing objet-oriented programs and has reeivedmuh attention in reent years (see, for example, [1, 11, 12,21, 20, 29, 30, 31℄).Determining the preise set of potential targets of virtualalls is related to the problem of objet-oriented type anal-ysis, whih is known to be diÆult [18℄. A set of poten-tial targets an be determined, at least onservatively, byperforming whole-program analysis on the entire appliation(see [4, 12, 20, 29, 35, 36, 38℄). One simple approximationof the targets of a all is the set of all methods that overridethe alled method. This set an be onstruted eÆientlyusing lass hierarhy analysis [11, 24, 31℄.

Various tehniques have been developed in reent years tore�ne the set of possible targets of a virtual all, produ-ing subsets of the set of all overriding methods. Liveness(rapid type) analysis [4, 31℄ was used to exempt dead meth-ods (methods guaranteed never to be invoked during ex-eution of the program) from being potential target andi-dates. Variable type analysis was used by the Sable researhgroup [35, 38℄ to obtain more aurate results than rapidtype analysis. A variety of ow-sensitive and ow-insensitivetype analyses are desribed by Grove [21℄. All these teh-niques inluding the basi \all-overridings" approximationrely on having all the lasses that might partiipate at run-time, �xed and available at analysis time.
2.2 Dynamic LanguagesIn dynami languages, the omplete set of lasses that willpartiipate in the exeution of an appliation may not beknown in advane. Dynamially loaded lasses may be en-ountered only at runtime, when they are referened forthe �rst time. Inter-lass analysis suh as all devirtual-ization may be invalidated when new unantiipated lassesare loaded. In several languages suh as Dylan [16℄, Java [19℄and Trellis [28℄, the programmer an prohibit lasses fromhaving sublasses or methods from being overridden. Thisenables related alls to be devirtualized safely, without therisk of future invalidation, but lays a burden on the pro-grammer and limits potential extension and reuse of theode. This paper deals with alls whih are not expliitlyrestrited to a single target by the programer.There are several approahes that enable inter-lass analy-sis and optimizations for dynami languages suh as Java.One approah is to assume that all relevant lasses and in-terfaes are supplied by the user in advane and revert totraditional stati ompilation tehniques. Suh an approahwas adopted by the JoveTM optimizing ompiler [26℄ whihanalyzes and ompiles entire Java appliations. The om-piler inside the TowerJ3.0TM deployment environment [37℄also relies on having all relevant lasses available for its �-nal step. The major drawbak of suh a whole-programoptimization approah is that the requirement of having allrelevant lasses available in advane annot always be satis-�ed.A seond approah is to assume that new lasses may appearat runtime and prepare mehanisms for dealing with suhunantiipated lasses. The simplest of suh mehanisms isa preondition that heks the atual type of the reeiverobjet before exeuting the inlined ode. The Jalape~no dy-nami ompiler uses suh guards [8℄. A similar but more ro-bust method test preondition was reently suggested [13℄.Preonditions are easily used by both stati and dynamiompilers, but they prevent other optimizations from tak-ing full advantage of the inreased method size provided byinlining.More sophistiated mehanisms for dealing with unanti-ipated lasses detet invalidated optimizations at runtimeand orret them using dynami reompilation. The JavaHotspotTM ompiler [23℄ uses suh a dynami deoptimiza-tion mehanism. Suh mehanisms an disover if a newlyloaded lass invalidates any existing inlinings and orret ev-ery suh inlining immediately by reompiling the appropri-



ate methods. A problem an our if a method whih needsto be reompiled is urrently exeuting, a fat whih greatlyompliates the reompilation proess. A speial mehanismsuh as on stak replaement in the Self system [22℄ an solvethis problem.Detlefs and Agesen [13℄ reently identi�ed a family of situa-tions (alled preexistene) whih do not require on-stak re-plaement. In suh situations urrently-exeuting methodsthat ontain invalidated inlinings are allowed to ontinue ex-euting the original ode until they exit. Only subsequentinvoations of these methods are to exeute the reompiledode, a fat whih simpli�es the reompilation proess.Ishizaki et al.[24℄ orret invalidated inlinings by replainga single instrution (a diret all or the �rst inlined instru-tion) with a jump to the original virtual all. This saves re-ompilation time but inreases the footprint sine both theoriginal all and the inlined ode are present at all times,and it also limits the opportunities for other optimizationssine the inlined ode must be kept ontiguous.
3. SEALED CALLSExisting tehniques for determining the potential targets ofvirtual alls either restrit dynami lass-loading (by rely-ing on the user or by applying whole-program analysis), orinit a runtime overhead. Our tehnique overomes thesedrawbaks. The main obstale that prevents stati devirtu-alization is the possibility that a dynamially loaded lasswill override the alled method and thereby provide a newtarget for the all. This obstale an be overome by makingsure that no new sublass of the alled lass an be loaded,or that the alled method annot be overridden by new sub-lasses. In Java, one trivial way to ensure this is to delarethe alled lass or the alled method final, but this is notalways desired or appliable.Our tehnique addresses alls to methods that are not de-lared final (and whose lass is not final). In suh ases,additional features are needed to enable stati devirtualiza-tion. Two key ingredients an be ombined to ahieve ourgoal: the �rst restrits the freedom to dynamially load newlasses and the seond restrits the ability to sublass andoverride the alled lass and method. The general idea is toensure that (i) all the targets of a virtual all must belongto a ertain subset of lasses and that (ii) no new lass anbe added to this subset without violating the standard rulesof the language. In our ase these subsets orrespond toJava pakages whih are sealed , as explained below. Whendealing with a sealed pakage it is safe to assume that allthe relevant lasses (i.e., those that belong to the pakage)are available for analysis in advane.There are several important di�erenes between our teh-nique and the utilization of the final modi�er. The finalmodi�er is part of the Java programming language, whilesealing is external to the language de�nition. The finalkeyword disables further extension of a lass or method,while sealing fores suh extensions to belong to other pak-ages. The final modi�er an be used to resolve monomor-phi alls to lass methods, while sealing an devirtualizepolymorphi alls to lasses and interfaes. In general, itis not surprising that final redues polymorphism, but it

is quite unexpeted that a seurity feature applied duringlass-loading has suh an e�et.The usage of the final modi�er leaves enough room forother devirtualization tehniques. Spei�ally, our approahleads to a signi�ant amount of additional safe devirtual-ization. Heneforth, the term virtual all denotes alls tovirtual non-final methods.
3.1 Sealed PackagesIn Java, every lass belongs to one spei� pakage. Eahpakage an have, as members, several lasses whih are usu-ally logially and funtionally related. The lasses of pak-ages an be aggregated into one JAR (Java ARhive) �le,together with additional information. Several JAR �les anddiretories usually apply when a Java program is exeuted,as spei�ed by the \lass-path". During exeution, when alass is referened for the �rst time, the Java virtual mahine(JVM) searhes the appliable JAR �les and diretories forthe desired lass.Starting with version 1.2 of the Java Software DevelopmentKit (SDK 1.2.2 [34℄), Java pakages that reside inside JAR�les an be sealed. If a pakage is sealed, all lasses de�ned inthat pakage must originate from the same JAR �le, other-wise an exeption is thrown (\java.lang.SeurityExeption").When a pakage is sealed inside a JAR �le we are ertainthat every appliation will either load all the lasses thatbelong to this pakage from this JAR �le, or not load any.It is not unreasonable to expet that many pakages will besealed. All standard ore Java pakages in the Java 2 run-time library rt.jar are sealed exept for two [34℄. The origi-nal motivation to seal pakages was to help enfore seurityand onsisteny within a version. Grouping together setsof lass �les is also very important for inter-lass analysis.To ensure the persistene of suh analysis it is importantto detet hanges made to the pakage (e.g., modi�ationand removal of existing lasses, insertion of new lasses, un-sealing the pakage). This is provided for in the form ofJAR-�le signing and versioning, whih are also available inSDK 1.2.2.Currently Java provides sealing only of individual pakages.It is possible to seal an entire JAR �le, thereby sealing allits pakages (unless stated otherwise). However, nothingbinds two sealed pakages together, even if they belong tothe same JAR �le. An appliation an load all lasses ofone sealed pakage p1 from a ertain JAR �le and load nonefrom another sealed pakage p2, if p2 is available at a loa-tion earlier in the lass-path. Providing the ability to sealseveral pakages together, may inrease the potential for safedevirtualization in the future.Sealing a pakage provides the �rst ingredient of identifyingsealed alls, by de�ning a set of lasses to whih no addi-tional lass an be inluded. The other ingredient, provingthat all the targets of a virtual all must belong to suh asubset, is presented in the next subsetion.
3.2 The Default (package) ModifierThe aess restritions imposed by the default (pakage) a-ess modi�er of lasses, interfaes and methods an be used



to prove that all the targets of a virtual all must belong toone spei� pakage. A all to a virtual method m of lass1 (denoted by 1::m) an only target methods that overridemethod m. Method 2::m an override method 1::m onlyif 2 extends 1 and has aess to 1::m. The aess and ex-tension an be either diret or indiret. There is one exep-tion to the above rule desribed later, where 2::m overrides1::m even though 2 does not extend 1.Java has several lass and method modi�ers, whih are rel-evant to our analysis. In this doument, the term \lass"refers to both lasses and interfaes, unless stated other-wise. A lass an be delared publi, in whih ase it anbe diretly extended by lasses from any pakage (providedit is not delared final). Classes whih are not delaredpubli an be diretly extended only by lasses of the samepakage, and will be referred to as pakaged lasses. Themethods of a lass an be delared publi, proteted, orprivate; the methods of an interfae are impliitly delaredpubli. Publi and proteted methods an be aessed fromoutside the pakage. Private methods an be aessed onlyfrom within the same lass and annot be overridden (theyare impliitly final). Finally, a method that is not delaredpubli, proteted, or private, is diretly aessible onlyfrom within its pakage, and will be referred to as a pakagedmethod.Pakaged lasses and methods an be diretly extended andaessed only from within their pakage, but they mightbe extended and aessed indiretly from other pakagesthrough transitivity. For example, a pakaged lass 1 anhave a diret publi sublass 2 within the same pakage. Itis now possible for a lass 3 from a di�erent pakage to di-retly extend lass 2, thereby indiretly extending lass 1.Similar senarios enable indiret aess to pakaged methodsfrom outside their pakage. The potential of suh indiretextension and aess enables the targets of a all to a pak-aged method to belong to di�erent pakages.There is one speial ase in Java where a method of a lass2::m an override a method of an interfae 1::m although2 does not implement 1 (see [19, pages 166{167℄). Thishappens when another \ombining" lass (3) implementsinterfae 1, extends lass 2, and inherits method 2::m asan overriding implementation for 1::m. If 1 is a pakagedinterfae and 2 belongs to a di�erent pakage, we obtainanother ase of inter-pakage overriding.It is thus possible to �nd all the methods that overridemethod 1::m by sanning the sublasses of 1, and oa-sionally examining superlasses of suh sublasses. The al-gorithm presented in the next setion identi�es sealed allsby heking if the alled method is aessible and if its lassan be extended, either diretly or indiretly from outsidetheir pakage.
4. IDENTIFYING SEALED CALLSThis setion presents an algorithm for identifying sealedalls, and for providing a omplete (onservative) set of tar-gets for eah sealed all. Aggressive inter-proedural analy-sis and optimization an be applied safely to suh alls.Calls are ategorized by the algorithm as being sealed alls

based on information related only to the alled method.Thus, the algorithm atually identi�es sealed methods |methods that an be alled only from within the same pak-age, where eah suh all is guaranteed to be a sealed all. Itis possible to mark non-overridden sealed methods final, orsuggest suh delarations to the programmer, as proposedby Jax [36℄.A detailed desription of the algorithm is given in Subse-tion 4.1. Our algorithm is based on a lass hierarhy graphof a single sealed pakage, without taking into aount anyout-of-pakage information, as explained in Subsetion 4.2.
4.1 The AlgorithmConsider a all to method m of lass or interfae , denotedby ::m. The following two steps determine whether or notthe all is a sealed all. First, the lasses and interfaeswhih belong to the pakage of  are analyzed and their hi-erarhial inheritane relationships are reorded in the formof a Class Hierarhy Graph (CHG). Next, a standard searhfor all methods overriding method ::m is performed withinthe pakage (based on the CHG) to determine if method::m an be overridden by methods from other pakages.The all is a sealed all if and only if we have veri�ed thatall overriding methods of ::m must be on�ned to 's pak-age.The sublasses of  that an potentially override method mor inherit suh an overriding implementation from a super-lass are traversed along this searh. These lasses are thesublasses d that extend lass  (or implement interfae )diretly or indiretly, with the exeption that if a lass de-lares method m as final all its sublasses are exempted.The searh is aborted if a publi non-final lass d is foundthat redelares method m as publi or proteted and notfinal, or inherits suh a delaration from a superlass. Inthis ase, the original all to ::m is not a sealed all beauselass d an be extended by a lass e from another pakageand e will be able to override ::m. If no suh lass d isfound, the all to ::m is a sealed all.Figure 1 presents an implementation for suh an algorithmthat determines whether a all to ::m is a sealed all ornot. Gathering the targets of a sealed all is a simple partof our algorithm, and has been omitted for larity. The twomethodIsSealed funtions handle the ases where  is a lassor an interfae. The funtion methodIsExposed reursivelysans the inheritane tree rooted at the given lass, anddetermines if the given method an be overridden from adi�erent pakage. Code related to the hekRoots ag isexplained in the next subsetion.
4.2 Package Based Class Hierarchy GraphOur underlying assumption is that the lasses of a singlesealed pakage are available for analysis, and nothing anbe assumed about lasses of other pakages. Therefore theanalysis for building the CHG of a pakage must be basedonly on information internal to the pakage. However, itmay be neessary to examine lasses of other pakages inorder to detet ertain inheritane relations in the CHG. Forinstane, suppose a lass of pakage p extends a lass fromanother pakage, whih in turn extends a lass of pakagep. This way the former lass indiretly extends the latter



Figure 1: Algorithm for Identifying Sealed Methodsboolean methodIsSealed(lass , method m) f// 1. Chek if  inherits m from another pakagelass super  while super does not delare m fsuper  the super lass of superif super does not belong to analyzed pakagereturn falseg// 2. Chek if  inherits m as �nalif super delares m �nalreturn true// 3. Chek reursively if  or a sublass of  exposes mglobal boolean hekRoots  falseboolean mIsPubliOrProteted  (super delares m publior proteted)if methodIsExposed(, m, mIsPubliOrProteted)return false// 4. If needed hek all lasses reursively starting from rootsif hekRootsforeah lass root whose superlass is not in pakage doif methodIsExposed(root, m, false)return falsereturn truegboolean methodIsSealed(interfae i, method m) fif i is a publi interfae // m is impliitly a publi methodreturn falseforeah lass (interfae)  implementing (extending) i doif not methodIsSealed(, m)return falsereturn truegboolean methodIsExposed(lass , method m,boolean mIsPubliOrProteted) fif  is a �nal lass or delares m �nalreturn falseif  delares mmIsPubliOrProteted ( delares m publi or proteted)if  is a publi lass ^ mIsPubliOrProtetedreturn trueforeah sublass diretly extending  doif methodIsExposed(sublass, m, mIsPubliOrProteted)return trueif  is a publi lass // and m is a pakaged methodhekRoots  truereturn falseg

lass and both belong to pakage p, even though no inheri-tane relationship is visible by looking only at lasses insidepakage p. One must examine the intermediate lass whihbelongs to the other pakage in order to ompletely deter-mine the inheritane relationship. A onservative way toope with this de�ieny is to assume that any two lassesin the pakage that an possibly extend one another throughross-pakage inheritane, do so.Here is a senario involving ross-pakage inheritane whihis relevant to identifying sealed alls. Suppose a pakage pontains two publi non-final lasses 1 and 3, with noinheritane relations visible within p. Suppose 1 delares apakaged method m, and 3 delares a similar method m aspubli or proteted. Now it is possible for a lass 2 froma pakage other than p to extend 1 and be extended by3. This enables 3::m to \smuggle" 1::m out of pakage p,sine it overrides 1::m and an be overridden from outsidep. This is however the only relevant senario: 1 must bepubli in order to be extensible by a lass 2 from outsidep and 1::m must originally be pakaged for otherwise it anbe overridden diretly by methods of other pakages. Beingon�ned to pakage p, our analysis onservatively assumesthat suh a lass 2 always exists. Methods of interfaes an-not partiipate in suh senarios sine they are all publi.The algorithms presented in Figure 1 ope with potentialross-pakage inheritane in the onservative manner ex-plained above. Classes whose diret superlasses do not be-long to the analyzed pakage are identi�ed as root lasses.The searh for all methods overriding ::m signals the poten-tial for ross-pakage extension when it enounters a publilass 1 whih delares m as pakaged and non-final or in-herits suh a delaration. If suh a signal is raised, all rootlasses (exept for the root whih is a superlass of ) areonsidered as indiret extensions (3) of  (see ode relatedto the hekRoots ag in Figure 1).Regarding the omplexity of our algorithm, �rst note thatthe CHG of a pakage an be onstruted in time O(N+M)where N is the number of lasses and interfaes, and M isthe number of inheritane edges. Given the CHG of thepakage, our algorithm visits eah lass and interfae oneat the most (usually only a \shallow" inheritane tree isvisited), taking a onstant time per visit, in order to identifya sealed method. Overall, per method, the exeution timeof the algorithm is at most linear in the size of the CHG ofthe analyzed pakage.
5. EXPERIMENTSThe algorithm for identifying sealed alls was implementedand tested on several benhmarks. Calls that are identi�edas sealed alls an be devirtualized safely, for instane byonverting invokevirtual to invokespeial as suggestedby Jax [36℄. Sealed alls to methods of interfaes may bene�tfrom a similar strength-redution optimization, by onvert-ing invokeinterfae to invokevirtual as proposed by theSable researh group [17℄, however only few suh andidateswere found in our experiments. The potential performaneimprovements of eliminating virtual funtion alls in C++programs have been studied by several researhers [9, 2, 15,30℄. In addition to reduing the overhead of dynami dis-path by devirtualization, monomorphi sealed alls an be



safely inlined without a guard. The potential bene�t of suhdiret inlining in Java is reported by Agesen and Detlefs [13,Table 6℄.In this setion we present experimental results showing thata signi�ant perentage of the virtual alls that reside in-side ertain library and appliation pakages are identi�edas sealed alls by our algorithm. An interesting observationis that a very high perentage of the alls that were foundto be sealed have exatly one possible target, and are there-fore good andidates for safe diret inlining. These resultsindiate the strong potential of using sealed alls to enhaneanalysis and optimization of Java programs.Subsetion 5.1 desribes the benhmarks that were used.Subsetion 5.2 reports the number of sealed all sites foundin the benhmark pakages, and Subsetion 5.3 presents thenumber of times sealed alls in appliation pakages wereexeuted while running the benhmarks, aording to pro-�ling data. Remarks regarding the experiments appear inSubsetion 5.4.
5.1 BenchmarksTable 1 desribes the Java programs used in the exper-iments. In eah benhmark we onsidered all the pak-ages that ontain a signi�ant amount (100) of virtual allsto non-final methods (for Jigsaw the threshold was 300).Only suh alls are relevant to devirtualization analysis.The runtime library rt.jar from Java 2 JDK release 1.2 washosen beause all its pakages exept for two are known tobe sealed, and beause it is fairly large, diverse, and highlyreusable. Optimization improvements made to rt.jar havegreat potential impat on the performane of other Javaprograms.Jigsaw [25℄ and pBob [5℄ are two large, multi-pakaged serverappliations. Jigsaw is an objet-oriented web server ofW3C implemented in Java. Portable business objet benh-mark (pBOB) is a kernel of business logi inspired by theTPC-C benhmark spei�ation2. SPECjvm98 [32℄ an-didates and benhmarks were hosen to represent lient-oriented programs. The analysis of appliation benhmarksassumes that all pakages are sealed. Note that this is avalid assumption whih does not ause seurity exeptionsfor these appliations.
5.2 Static CountsTables 2, 3, and 4 present stati measurements regarding thealls that reside inside rt.jar and the appliation pakagestested. For eah pakage, we ounted the number of virtualall sites to non-final methods that appear in the pakage(olumn Vs). We also ounted how many of these virtualalls were intra-pakage alls, where both aller and the orig-inal allee belong to the same pakage; only suh alls areandidates to be sealed alls (olumn Ps). The perentageof virtual alls that were identi�ed as sealed, and that werealso identi�ed as monomorphi (aording to our algorithm)are presented next (olumns Ss, Ms respetively). The ta-2In aordane with the TPC's fair use poliy we note thatpBOB deviates from the TPC-C spei�ation and is notomparable to any oÆial TPC result.

Table 1: Desription of benhmark programsType Benhmark Vt DesriptionLibrary rt.jar 52909 Java 2 JDK release 1.2Server Jigsaw 8322 W3C's web server,version 2.0.3pBob 1390 Transation proessingbenhmarkSPECjvm98 java 2177 Java byteode ompilerBenhmarks jess 828 Java expert shellsystemjak 735 Parser generatorhek 238 Tests JVM featuresdb 115 Searh and modifya databasempegaudio 115 Deompress audio �lesSPECjvm98 nih 1684 Image manipulationCandidates raytrae 869 Graphis raytraermpeg 260 MPEG video deodingsi 208 Interpreter for a simplelanguagest 193 java/util lass exerisertmix 155 Dining philosophersrihards 114 Threads running �veOS simulator versionsdeltablue 105 Deltablue algorithmVt Total number of Virtual alls to non-final methodsTable 2: Stati ounts for \best" rt.jar pakagesPakage Vs Ps Ss Mssun/audio 324 65.7 59.3 55.2sun/awt/Albert 1202 89.5 45.5 44.8javax/swing/text/rtf 592 37.8 37.8 31.2java/awt/datatransfer 114 50.0 31.6 31.6sun/jdb/odb 1076 89.9 27.0 27.0javax/swing/text/html/parser 377 73.2 26.3 26.3javax/swing/tree 1113 73.9 25.9 25.9sun/seurity/tools 1267 22.7 22.7 22.7sun/applet 688 39.5 20.5 20.5Vs Number of Virtual allsPs Perentage of alls in Vs to methods of same PakageSs Perentage of alls in Vs identi�ed as SealedMs Perentage of sealed and Monomorphi alls in Vsbles are sorted aording to the perentage of sealed alls(olumn Ss), in desending order.There are 64 pakages in rt.jar with at least 100 virtual allsto non-final methods, of whih all but one are known tobe sealed. On average, 40% of the virtual alls in thesepakages are intra-pakage alls. More than half of thesepakages ontain at least 5% sealed alls, where the totalaverage of sealed alls is 8.5%. Furthermore, on averageabout 7.9% of the virtual alls are sealed and monomorphiaording to our algorithm. Table 2 shows 9 of the pakagesthat ontain the highest perentage of sealed alls (at least20%).Regarding tables 3 and 4, roughly half of all the virtualalls that were analyzed are intra-pakage alls. Thus thereis a large potential for sealing many virtual alls. In gen-eral, the results obtained by our algorithm show that thereis a large variane in the number of sealed alls per pak-age | in some pakages nearly all (94.8%) virtual alls aresealed, whereas in other pakages less than 1% of the virtualalls are sealed alls. For example, in pakage rihards/daithe entire lass hierarhy is pakaged, exept for the main



Table 3: Stati ounts in pBob and Jigsaw pakagesPakage Vs Ps Ss MspBob (pre�x = om/ibm/sf/ )BOB/infra/Colletions 138 97.1 15.2 15.2BOB 1129 45.9 13.8 13.6BOB/infra/Fatory 123 77.2 0.0 0.0Jigsaw (pre�x = org/w3/ )vs 393 48.1 28.0 27.7www/http 735 77.0 14.3 14.3tools/resoures/store 362 31.5 12.2 12.2www/protool/http 407 45.0 11.3 10.8jigadm/editors 1491 20.1 8.5 8.5tools/widgets 491 25.9 7.1 6.7jigsaw/frames 950 25.1 3.7 3.7jigsaw/servlet 724 29.1 3.2 3.2jigsaw/�lters 430 12.3 2.8 2.8jigsaw/admin 452 40.0 2.4 2.4www/protool/http/ahe 502 36.9 1.2 1.2jigsaw/http 642 33.2 0.9 0.9tools/resoures 743 78.6 0.4 0.4Average 45.2 7.8 7.7Table 4: Stati ounts in benhmark pakagesPakage Vs Ps Ss MsSPECjvm98 Benhmarksmpegaudio 115 65.2 65.2 49.6hek 238 53.8 50.4 50.0jess/jess 828 84.7 36.0 36.0java 2177 77.4 10.8 6.2jak 735 30.1 9.4 9.4db 115 24.3 1.7 1.7SPECjvm98 Candidatesrihards/dai 114 95.6 94.7 93.9deltablue 105 86.7 85.7 50.5tmix 155 62.6 62.6 38.7si 208 64.4 58.2 58.2nih 1684 57.1 53.9 43.2st 193 68.9 12.4 12.4mpeg 260 74.6 1.5 1.5raytrae 869 98.2 0.0 0.0Average 67.4 38.8 32.2(Rihards) lass whih is publi, resulting in a high perent-age of sealed alls. On the other extreme, in pakages ray-trae and om/ibm/sf/BOB/infra/Fatory all lasses andmethods are publi, leaving no potential for sealed alls.In pakage org/w3/tools/resoures, all 56 lasses and 407methods are publi exept for two lasses and two methodswhih are pakaged, resulting in very few sealed alls.For some rt.jar and SPECjvm98 pakages, almost every vir-tual intra-pakage all is identi�ed by our algorithm as asealed all, leaving little prospet for more powerful algo-rithms. Overall, for most pakages analyzed in both rt.jarand appliation benhmarks, nearly all sealed alls are shownto be monomorphi, a fat whih makes them good andi-dates for aggressive optimizations suh as diret inlining.
5.3 Dynamic CountsTable 5 presents dynami measurements regarding alls thatwere exeuted while running the SPECjvm98 andidates andbenhmarks. These programs were exeuted with size `10'to produe dynami pro�les. Therefore, the results do notfollow the oÆial SPEC rules.

Table 5: Dynami ounts in benhmark pakagesBenhmark Vd Pd Sd MdSPECjvm98 Benhmarksmpegaudio 26650 99.8 6.2 6.1hek 68 29.8 1.2 1.2jess 20789 93.7 5.9 5.9java 3416 62.0 14.4 9.6jak 3962 39.2 17.5 17.5db 326 22.5 0.0 0.0SPECjvm98 Candidatesrihards 88031 100.0 100.0 88.2deltablue 46681 100.0 100.0 71.1tmix 71834 99.1 98.8 76.0si 10973 47.3 33.0 33.0nih 5 18.0 3.5 3.5st 2124 21.6 21.1 21.1mpeg 21987 67.0 0.0 0.0raytrae 60051 100.0 0.0 0.0Average 64.3 28.7 23.8Vd Number of invoked Virtual alls (in thousands)Pd Perentage of alls in Vd to methods of same PakageSd Perentage of alls in Vd identi�ed as SealedMd Perentage of sealed and Monomorphi alls in VdDynami measurements are not presented for pBob and Jig-saw, due to their highly on�gurable and interative na-ture. We onsidered all alls that originated from applia-tion pakages, sine they usually aounted for most of theexeuted alls. For eah benhmark we ounted how manyvirtual alls to non-final methods were exeuted (olumnVd). Columns Pd, Sd and Md are analogous to the statimeasurements (Ps, Ss, Ms) in Tables 2, 3 and 4.Of all virtual alls exeuted, a high perentage (about 64%)were intra-pakage alls, and more than 28% were foundto be sealed alls by our algorithm. On the average, whilerunning a benhmark, our algorithm identi�ed as sealed allsnearly 45% of the intra-pakage alls that are exeuted, withsome benhmarks reahing lose to 100%. As with the statiounts (see Setion 5.2), for many benhmarks all sealedalls are also shown to be monomorphi.The variane in the dynami results is huge. For threebenhmarks (rihards, deltablue and tmix) almost all (morethan 98.8%) virtual alls are identi�ed as sealed. On theother extreme, in four benhmarks (hek, db, mpeg andraytrae) a very small perentage (less than 1.2%) of thevirtual alls were identi�ed as sealed.Several benhmarks (hek, nih, jak and db) exeuted asigni�ant number of alls originating from JDK pakages.In these ases, about 6.6% of the virtual alls from the JDKwere identi�ed as sealed and monomorphi.
5.4 Statistical RemarksThe pro�ling data used (the standard java -prof tool) re-ports the number of times a ertain method alls anothermethod3. If one method ontains several all-sites, eah po-tentially targeted at the same target method, then the dis-tribution of the method-to-method frequeny among theseall-sites is not known to us. However, there was no prob-3Note that for alls to or from native methods, the alleeor aller were reported as unknown. Suh ases were verysare and had no signi�ant e�et on the statistis.



lem to determine the aurate invoation ount for almostall sealed alls that appear in the benhmarks.In order to build the CHG of a pakage we analyze the byte-odes (the invokevirtual and invokeinterfae byteodesin partiular) to loate virtual all sites, and use the allee-lass annotated at eah all-site. There may be a di�erenebetween the allee lass that appears in the Java soure ode,and the allee lass annotated in the byteode. This happenswhen the original allee lass does not ontain a delarationof the alled method. In suh ases, the annotated alleelass is a superlass of the original allee lass that ontainsthe required delaration. It is onservative to use the anno-tated allee lass (see [13, page 264℄ for further details).
6. CONCLUDING REMARKSUsing the default aess permission of pakaged lasses, in-terfaes and methods together with the ability to seal Javapakages, we are able to determine omplete sets of tar-gets for ertain alls. In this paper we have proposed atype of Class-Hierarhy Analysis that identi�es sealed alls,whih for some ases identi�es nearly all intra-pakage allsas sealed alls. In some SPECjvm98 pakages, almost allintra-pakage alls are identi�ed by our algorithm as sealed,and a signi�ant number of sealed alls are invoked whilerunning these benhmarks. In the widely used Java 2 rt.jarlibrary, about 10% of the pakages ontain a signi�ant per-entage of sealed alls (20{60%), and in more than halfof the pakages, at least 5% of all virtual alls are sealedalls. For many pakages all sealed alls are also shown tobe monomorphi.Our analysis supports inter-proedural analyses suh as im-mutability and esape analysis, and enables aggressive opti-mizations suh as diret inlining. It is eÆient and statiin nature | it an support both dynami ompilers byenoding the results as byteode annotations, and statipre-runtime ompilers or byteode-to-byteode transform-ers. The entire analysis and optimizations an be validatedinstantly at runtime when the pakage is �rst loaded from itsJAR �le by verifying the seal, version, and signature. Thereis no need for omplex dependene models and mehanismsthat hek multiple �les and timestamps, or for sophistiatedreompilation tehniques.Our algorithm atually identi�es sealed methods | meth-ods that an be alled only from within the same pakage,where eah suh all is guaranteed to be a sealed all. Thisanalysis may be enhaned in several possible ways. Addi-tional alls might be sealed by onsidering the spei� on-text of eah individual all site: data-ow analysis an beused to better determine the possible types of the reeiverobjet. Reently, Sreedhar, Burke and Choi [33℄ presenteda framework whih addresses similar issues using dataowanalysis. Suh tehniques are signi�antly more omplexthan our proposed CHA-type algorithm. Moreover our ex-periments show that in many ases our algorithm is ableto identify most of the alls that an potentially be sealed,leaving limited prospets for more powerful tools.Another way to try and enhane our analysis is to use live-ness information (as in Rapid-Type Analysis [4℄). For in-stane, pakaged lasses or lasses whih do not have publi

or proteted onstrutors an be onsidered live only ifthey are instantiated within the pakage. There is how-ever little hope of sealing additional alls this way, sinea publi lass, that prevents a all from being sealed a-ording to our algorithm, must be onsidered live (if it hasa publi or proteted onstrutor). Liveness informationan potentially redue the number of targets a sealed allis known to have. However, our algorithm shows that formany SPECjvm98 and rt.jar pakages, all sealed alls aremonomorphi.A related problem is to try and identify all possible allersof a given method, whih is also very important for inter-proedural optimizations (e.g., inter-proedural redundanyelimination, dead method removal [36℄). One ondition thatis suÆient and eÆient for this purpose is to hek if themethod is a pakaged method in a sealed and signed pakage.Sealed methods also belong to this ategory, sine they anbe alled only from within their pakage (and from nativeode or via reetion).
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