Sealed Calls in Java Packages

Ayal Zaks
IBM Research Laboratory in
Haifa, Israel

zaks@il.ibm.com

ABSTRACT

Determining the potential targets of virtual method invoca-
tions is essential for inter-procedural optimizations of object-
oriented programs. It is generally hard to determine such
targets accurately. The problem is especially difficult for
dynamic languages such as Java, because additional targets
of virtual calls may appear at runtime. Current mechanisms
that enable inter-procedural optimizations for dynamic lan-
guages, repeatedly validate the optimizations at runtime.
This paper addresses this predicament by proposing a novel
technique for conservative devirtualization analysis, which
applies to a significant number of virtual calls in Java pro-
grams. Unlike previous work, our technique requires neither
whole program analysis nor runtime information, and in-
curs no runtime overhead. Our solution is very efficient to
compute and is based on a newly introduced, seemingly un-
related security feature of Java file archives. On average, our
analysis “seals” (safely devirtualizes) about 39% of the vir-
tual calls (to non-final methods) that appear in SPECjvm98
programs, and about 29% of the calls invoked while execut-
ing these programs. In the runtime library rt.jar, about 10%
of the packages contain a significant percentage (20-60%) of
sealed calls, with a total average of about 8.5%. Most of
these calls are also shown to be monomorphic, a fact which
can be safely exploited by aggressive inter-procedural op-
timizations such as direct inlining. These results indicate
that our technique has a strong potential for enhancing the
analysis and optimization of Java programs.

Categories and Subject Descriptors

D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.3.2 [Programming Languages]: Language
Classifications—Java, Object-oriented Programming; D.3.4
[Programming Languages|: Processors—Compilers, Op-
timization, Run-time environments

General Terms

Languages, Performance

Vitaly Feldman
IBM Research Laboratory in
Haifa, Israel

felvit@cs.technion.ac.il

Nava Aizikowitz
IBM Research Laboratory in
Haifa, Israel

aizik@il.ibm.com

Keywords

Java, object-oriented programming, inter-procedural anal-
ysis, call devirtualization, method inlining, class hierarchy
graph, call graph, sealed package

1. INTRODUCTION

Inter-procedural optimizations of object-oriented programs
are based on the determination of the potential targets of
virtual method invocations. This is a challenging problem
especially for dynamic languages such as Java™ !, because
additional targets of virtual calls may appear at runtime.
In certain languages the programmer can prohibit methods
from being overridden, thereby resolving calls to these meth-
ods. Calls to such “final” methods are not considered to be
virtual calls in this paper. Existing techniques that deter-
mine the targets of virtual calls in dynamic languages either
restrict dynamic class loading (by relying on the user [36]
or by applying whole-program analysis [4]), or inflict a run-
time overhead. In addition, some solutions imply restric-
tions on further optimizations and some require special run-
time mechanisms. An ideal solution should have no runtime
overhead and restrictions. So far, all techniques fall short of
this ideal.

Our goal is to overcome all these drawbacks by identifying a
new type of calls in Java whose set of potential targets can be
determined completely and explicitly in advance, even prior
to runtime. More specifically, we say that a call is a sealed
call if it appears inside a sealed Java package [34], and has
the property that all its targets are guaranteed to belong to
the same package. Sealed calls can be identified by analyz-
ing single Java packages, without relying on whole-program
analysis. Our analysis can be viewed as an application of
almost whole program compilation [7).

Identifying sealed calls and their potential targets facilitates
aggressive inter-procedural intra-package optimizations. For
example, if a sealed call has only one potential target, it can
be inlined safely without any preconditions. In addition to
the immediate application to devirtualization and inlining,
our analysis clearly contributes to other inter-procedural
analyses and optimizations such as immutability and escape
analyses [6, 10, 13, 39], and object inlining [7, 14]. Our tech-
nique can be implemented efficiently and can support static
compilers, bytecode-to-bytecode transformers, or dynamic
compilers by using bytecode annotations [3, 36]. Since our

!Java is a trademark of Sun Microsystems, Inc.



analysis is applied to Java bytecode, it can be used for a
wide variety of languages that produce such bytecode.

The results obtained by our technique indicate a significant
potential for practical improvements in analyses and opti-
mizations. In about half of the packages in the runtime li-
brary rt.jar (whose packages are known to be sealed except
for two), 5-60% of the virtual calls (to non- final methods)
are sealed calls according to our analysis. On average, our al-
gorithm identifies nearly 39% of all virtual calls that appear
in packages of SPECjvm98™ [32] benchmarks and candi-
dates as sealed calls (assuming packages are sealed), with
half of the packages scoring between 50% and 95%. Almost
29% of all virtual calls invoked while running these bench-
marks were identified as sealed calls. For many packages,
all sealed calls are shown to have only one possible target,
which makes them good candidates for direct inlining.

The rest of this paper is organized as follows. Section 2
provides a background and describes related work on de-
virtualization of calls in dynamic languages. Section 3 de-
fines sealed calls, and Section 4 describes an algorithm for
identifying sealed calls and their possible targets. Section 5
provides data on the extent of prevalence of sealed calls.
Conclusions and directions for future work are presented in
Section 6.

2. BACKGROUND

2.1 The Devirtualization Problem

The execution time of programs can be reduced considerably
by using compiler optimizations which better exploit hard-
ware resources [27]. Programs that consist of many short
procedures require inter-procedural optimizations in order
to obtain efficient optimized code. One of the most relevant
inter-procedural optimization is inlining, which can improve
performance by reducing the overhead of calls and by in-
creasing opportunities for other optimizations. In order to
perform inlining and other inter-procedural optimizations it
is essential to identify the targets of calls.

Object-oriented programs promote the use of short meth-
ods to encapsulate functionality and as a means of modu-
larity and abstraction. Such methods are usually virtual, a
fact which complicates inter-procedural optimizations. Each
time a call to a virtual method is executed, the declared
method or one of several methods which override it is actu-
ally invoked, depending on the dynamic type of the receiver
object. The ability to identify in advance the potential tar-
gets of a virtual call, known as call devirtualization, is crucial
for optimizing object-oriented programs and has received
much attention in recent years (see, for example, [1, 11, 12,
21, 20, 29, 30, 31]).

Determining the precise set of potential targets of virtual
calls is related to the problem of object-oriented type anal-
ysis, which is known to be difficult [18]. A set of poten-
tial targets can be determined, at least conservatively, by
performing whole-program analysis on the entire application
(see [4, 12, 20, 29, 35, 36, 38]). One simple approximation
of the targets of a call is the set of all methods that override
the called method. This set can be constructed efficiently
using class hierarchy analysis [11, 24, 31].

Various techniques have been developed in recent years to
refine the set of possible targets of a virtual call, produc-
ing subsets of the set of all overriding methods. Liveness
(rapid type) analysis [4, 31] was used to exempt dead meth-
ods (methods guaranteed never to be invoked during ex-
ecution of the program) from being potential target candi-
dates. Variable type analysis was used by the Sable research
group [35, 38] to obtain more accurate results than rapid
type analysis. A variety of flow-sensitive and flow-insensitive
type analyses are described by Grove [21]. All these tech-
niques including the basic “all-overridings” approximation
rely on having all the classes that might participate at run-
time, fixed and available at analysis time.

2.2 Dynamic Languages

In dynamic languages, the complete set of classes that will
participate in the execution of an application may not be
known in advance. Dynamically loaded classes may be en-
countered only at runtime, when they are referenced for
the first time. Inter-class analysis such as call devirtual-
ization may be invalidated when new unanticipated classes
are loaded. In several languages such as Dylan [16], Java [19]
and Trellis [28], the programmer can prohibit classes from
having subclasses or methods from being overridden. This
enables related calls to be devirtualized safely, without the
risk of future invalidation, but lays a burden on the pro-
grammer and limits potential extension and reuse of the
code. This paper deals with calls which are not explicitly
restricted to a single target by the programer.

There are several approaches that enable inter-class analy-
sis and optimizations for dynamic languages such as Java.
One approach is to assume that all relevant classes and in-
terfaces are supplied by the user in advance and revert to
traditional static compilation techniques. Such an approach
was adopted by the Jove™ optimizing compiler [26] which
analyzes and compiles entire Java applications. The com-
piler inside the TowerJ3.0™ deployment environment [37]
also relies on having all relevant classes available for its fi-
nal step. The major drawback of such a whole-program
optimization approach is that the requirement of having all
relevant classes available in advance cannot always be satis-
fied.

A second approach is to assume that new classes may appear
at runtime and prepare mechanisms for dealing with such
unanticipated classes. The simplest of such mechanisms is
a precondition that checks the actual type of the receiver
object before executing the inlined code. The Jalapeno dy-
namic compiler uses such guards [8]. A similar but more ro-
bust method test precondition was recently suggested [13].
Preconditions are easily used by both static and dynamic
compilers, but they prevent other optimizations from tak-
ing full advantage of the increased method size provided by
inlining.

More sophisticated mechanisms for dealing with unantic-
ipated classes detect invalidated optimizations at runtime
and correct them using dynamic recompilation. The Java
Hotspot™ compiler [23] uses such a dynamic deoptimiza-
tion mechanism. Such mechanisms can discover if a newly
loaded class invalidates any existing inlinings and correct ev-
ery such inlining immediately by recompiling the appropri-



ate methods. A problem can occur if a method which needs
to be recompiled is currently executing, a fact which greatly
complicates the recompilation process. A special mechanism
such as on stack replacement in the Self system [22] can solve
this problem.

Detlefs and Agesen [13] recently identified a family of situa-
tions (called preeristence) which do not require on-stack re-
placement. In such situations currently-executing methods
that contain invalidated inlinings are allowed to continue ex-
ecuting the original code until they exit. Only subsequent
invocations of these methods are to execute the recompiled
code, a fact which simplifies the recompilation process.

Ishizaki et al.[24] correct invalidated inlinings by replacing
a single instruction (a direct call or the first inlined instruc-
tion) with a jump to the original virtual call. This saves re-
compilation time but increases the footprint since both the
original call and the inlined code are present at all times,
and it also limits the opportunities for other optimizations
since the inlined code must be kept contiguous.

3. SEALED CALLS

Existing techniques for determining the potential targets of
virtual calls either restrict dynamic class-loading (by rely-
ing on the user or by applying whole-program analysis), or
inflict a runtime overhead. Our technique overcomes these
drawbacks. The main obstacle that prevents static devirtu-
alization is the possibility that a dynamically loaded class
will override the called method and thereby provide a new
target for the call. This obstacle can be overcome by making
sure that no new subclass of the called class can be loaded,
or that the called method cannot be overridden by new sub-
classes. In Java, one trivial way to ensure this is to declare
the called class or the called method final, but this is not
always desired or applicable.

Our technique addresses calls to methods that are not de-
clared final (and whose class is not final). In such cases,
additional features are needed to enable static devirtualiza-
tion. Two key ingredients can be combined to achieve our
goal: the first restricts the freedom to dynamically load new
classes and the second restricts the ability to subclass and
override the called class and method. The general idea is to
ensure that (i) all the targets of a virtual call must belong
to a certain subset of classes and that (ii) no new class can
be added to this subset without violating the standard rules
of the language. In our case these subsets correspond to
Java packages which are sealed, as explained below. When
dealing with a sealed package it is safe to assume that all
the relevant classes (i.e., those that belong to the package)
are available for analysis in advance.

There are several important differences between our tech-
nique and the utilization of the final modifier. The final
modifier is part of the Java programming language, while
sealing is external to the language definition. The final
keyword disables further extension of a class or method,
while sealing forces such extensions to belong to other pack-
ages. The final modifier can be used to resolve monomor-
phic calls to class methods, while sealing can devirtualize
polymorphic calls to classes and interfaces. In general, it
is not surprising that final reduces polymorphism, but it

is quite unexpected that a security feature applied during
class-loading has such an effect.

The usage of the final modifier leaves enough room for
other devirtualization techniques. Specifically, our approach
leads to a significant amount of additional safe devirtual-
ization. Henceforth, the term wvirtual call denotes calls to
virtual non-final methods.

3.1 Sealed Packages

In Java, every class belongs to one specific package. Each
package can have, as members, several classes which are usu-
ally logically and functionally related. The classes of pack-
ages can be aggregated into one JAR (Java ARchive) file,
together with additional information. Several JAR files and
directories usually apply when a Java program is executed,
as specified by the “class-path”. During execution, when a
class is referenced for the first time, the Java virtual machine
(JVM) searches the applicable JAR files and directories for
the desired class.

Starting with version 1.2 of the Java Software Development
Kit (SDK 1.2.2 [34]), Java packages that reside inside JAR
files can be sealed. If a package is sealed, all classes defined in
that package must originate from the same JAR file, other-
wise an exception is thrown (“java.lang.SecurityException”).

When a package is sealed inside a JAR file we are certain
that every application will either load all the classes that
belong to this package from this JAR file, or not load any.
It is not unreasonable to expect that many packages will be
sealed. All standard core Java packages in the Java 2 run-
time library rt.jar are sealed except for two [34]. The origi-
nal motivation to seal packages was to help enforce security
and consistency within a version. Grouping together sets
of class files is also very important for inter-class analysis.
To ensure the persistence of such analysis it is important
to detect changes made to the package (e.g., modification
and removal of existing classes, insertion of new classes, un-
sealing the package). This is provided for in the form of
JAR-file signing and versioning, which are also available in
SDK 1.2.2.

Currently Java provides sealing only of individual packages.
It is possible to seal an entire JAR file, thereby sealing all
its packages (unless stated otherwise). However, nothing
binds two sealed packages together, even if they belong to
the same JAR file. An application can load all classes of
one sealed package pi from a certain JAR file and load none
from another sealed package p», if p» is available at a loca-
tion earlier in the class-path. Providing the ability to seal
several packages together, may increase the potential for safe
devirtualization in the future.

Sealing a package provides the first ingredient of identifying
sealed calls, by defining a set of classes to which no addi-
tional class can be included. The other ingredient, proving
that all the targets of a virtual call must belong to such a
subset, is presented in the next subsection.

3.2 The Default (package) Modifier

The access restrictions imposed by the default (package) ac-
cess modifier of classes, interfaces and methods can be used



to prove that all the targets of a virtual call must belong to
one specific package. A call to a virtual method m of class
c1 (denoted by cl::m) can only target methods that override
method m. Method ¢2::m can override method cl::m only
if ¢2 extends cl and has access to cl::m. The access and ex-
tension can be either direct or indirect. There is one excep-
tion to the above rule described later, where c2::m overrides
cl::m even though ¢2 does not extend cl.

Java has several class and method modifiers, which are rel-
evant to our analysis. In this document, the term “class”
refers to both classes and interfaces, unless stated other-
wise. A class can be declared public, in which case it can
be directly extended by classes from any package (provided
it is not declared final). Classes which are not declared
public can be directly extended only by classes of the same
package, and will be referred to as packaged classes. The
methods of a class can be declared public, protected, or
private; the methods of an interface are implicitly declared
public. Public and protected methods can be accessed from
outside the package. Private methods can be accessed only
from within the same class and cannot be overridden (they
are implicitly final). Finally, a method that is not declared
public, protected, or private, is directly accessible only
from within its package, and will be referred to as a packaged
method.

Packaged classes and methods can be directly extended and
accessed only from within their package, but they might
be extended and accessed indirectly from other packages
through transitivity. For example, a packaged class cl can
have a direct public subclass ¢2 within the same package. It
is now possible for a class ¢3 from a different package to di-
rectly extend class ¢2, thereby indirectly extending class cl.
Similar scenarios enable indirect access to packaged methods
from outside their package. The potential of such indirect
extension and access enables the targets of a call to a pack-
aged method to belong to different packages.

There is one special case in Java where a method of a class
c2::m can override a method of an interface cl::m although
c2 does not implement cl (see [19, pages 166-167]). This
happens when another “combining” class (¢3) implements
interface cl, extends class ¢2, and inherits method c2::m as
an overriding implementation for cl::m. If ¢l is a packaged
interface and ¢2 belongs to a different package, we obtain
another case of inter-package overriding.

It is thus possible to find all the methods that override
method cl::m by scanning the subclasses of ¢1, and occa-
sionally examining superclasses of such subclasses. The al-
gorithm presented in the next section identifies sealed calls
by checking if the called method is accessible and if its class
can be extended, either directly or indirectly from outside
their package.

4. |IDENTIFYING SEALED CALLS

This section presents an algorithm for identifying sealed
calls, and for providing a complete (conservative) set of tar-
gets for each sealed call. Aggressive inter-procedural analy-
sis and optimization can be applied safely to such calls.

Calls are categorized by the algorithm as being sealed calls

based on information related only to the called method.
Thus, the algorithm actually identifies sealed methods —
methods that can be called only from within the same pack-
age, where each such call is guaranteed to be a sealed call. It
is possible to mark non-overridden sealed methods final, or
suggest such declarations to the programmer, as proposed
by Jax [36].

A detailed description of the algorithm is given in Subsec-
tion 4.1. Our algorithm is based on a class hierarchy graph
of a single sealed package, without taking into account any
out-of-package information, as explained in Subsection 4.2.

4.1 The Algorithm

Consider a call to method m of class or interface ¢, denoted
by c::m. The following two steps determine whether or not
the call is a sealed call. First, the classes and interfaces
which belong to the package of ¢ are analyzed and their hi-
erarchical inheritance relationships are recorded in the form
of a Class Hierarchy Graph (CHG). Next, a standard search
for all methods overriding method c::m is performed within
the package (based on the CHG) to determine if method
ci:m can be overridden by methods from other packages.
The call is a sealed call if and only if we have verified that
all overriding methods of c::m must be confined to ¢’s pack-
age.

The subclasses of ¢ that can potentially override method m
or inherit such an overriding implementation from a super-
class are traversed along this search. These classes are the
subclasses d that extend class ¢ (or implement interface c)
directly or indirectly, with the exception that if a class de-
clares method m as final all its subclasses are exempted.
The search is aborted if a public non-final class d is found
that redeclares method m as public or protected and not
final, or inherits such a declaration from a superclass. In
this case, the original call to c::m is not a sealed call because
class d can be extended by a class e from another package
and e will be able to override c::m. If no such class d is
found, the call to c::m is a sealed call.

Figure 1 presents an implementation for such an algorithm
that determines whether a call to c::m is a sealed call or
not. Gathering the targets of a sealed call is a simple part
of our algorithm, and has been omitted for clarity. The two
methodIsSealed functions handle the cases where c is a class
or an interface. The function methodIsExposed recursively
scans the inheritance tree rooted at the given class, and
determines if the given method can be overridden from a
different package. Code related to the checkRoots flag is
explained in the next subsection.

4.2 Package Based Class Hierarchy Graph

Our underlying assumption is that the classes of a single
sealed package are available for analysis, and nothing can
be assumed about classes of other packages. Therefore the
analysis for building the CHG of a package must be based
only on information internal to the package. However, it
may be necessary to examine classes of other packages in
order to detect certain inheritance relations in the CHG. For
instance, suppose a class of package p extends a class from
another package, which in turn extends a class of package
p. This way the former class indirectly extends the latter



Figure 1: Algorithm for Identifying Sealed Methods

boolean methodIsSealed(class ¢, method m) {

// 1. Check if ¢ inherits m from another package
class super <+ ¢
while super does not declare m {
super < the super class of super
if super does not belong to analyzed package
return false

}

// 2. Check if ¢ inherits m as final
if super declares m final
return true

// 3. Check recursively if ¢ or a subclass of ¢ exposes m
global boolean check Roots < false
boolean mIsPublicOrProtected < (super declares m public
or protected)
if methodIsExposed(c, m, mIsPublicOrProtected)
return false

// 4. Tf needed check all classes recursively starting from roots
if check Roots
foreach class root whose superclass is not in package do
if methodIsEzposed(root, m, false)
return false

return true

}

boolean methodIsSealed(interface ¢, method m) {

if 7 is a public interface
return false

// m is implicitly a public method

foreach class (interface) ¢ implementing (extending) ¢ do
if not methodIsSealed(c, m)
return false

return true

}

boolean methodIsExposed(class ¢, method m,
boolean mIsPublicOr Protected) {

if ¢ is a final class or declares m final
return false

if ¢ declares m
mlsPublicOr Protected < (c declares m public or protected)

if ¢ is a public class A mIsPublicOr Protected
return true

foreach subclass directly extending ¢ do
if methodIsEzposed(subclass, m, mIsPublicOr Protected)
return true

if ¢ is a public class
check Roots + true

// and m is a packaged method

return false

}

class and both belong to package p, even though no inheri-
tance relationship is visible by looking only at classes inside
package p. One must examine the intermediate class which
belongs to the other package in order to completely deter-
mine the inheritance relationship. A conservative way to
cope with this deficiency is to assume that any two classes
in the package that can possibly extend one another through
cross-package inheritance, do so.

Here is a scenario involving cross-package inheritance which
is relevant to identifying sealed calls. Suppose a package p
contains two public non-final classes cl and ¢3, with no
inheritance relations visible within p. Suppose cl declares a
packaged method m, and ¢3 declares a similar method m as
public or protected. Now it is possible for a class ¢2 from
a package other than p to extend cl and be extended by
c3. This enables ¢3::m to “smuggle” cl::m out of package p,
since it overrides cl::m and can be overridden from outside
p. This is however the only relevant scenario: ¢l must be
public in order to be extensible by a class ¢2 from outside
p and cl::m must originally be packaged for otherwise it can
be overridden directly by methods of other packages. Being
confined to package p, our analysis conservatively assumes
that such a class ¢2 always exists. Methods of interfaces can-
not participate in such scenarios since they are all public.

The algorithms presented in Figure 1 cope with potential
cross-package inheritance in the conservative manner ex-
plained above. Classes whose direct superclasses do not be-
long to the analyzed package are identified as root classes.
The search for all methods overriding c::m signals the poten-
tial for cross-package extension when it encounters a public
class c1 which declares m as packaged and non-final or in-
herits such a declaration. If such a signal is raised, all root
classes (except for the root which is a superclass of ¢) are
considered as indirect extensions (c3) of ¢ (see code related
to the checkRoots flag in Figure 1).

Regarding the complexity of our algorithm, first note that
the CHG of a package can be constructed in time O(N + M)
where IV is the number of classes and interfaces, and M is
the number of inheritance edges. Given the CHG of the
package, our algorithm visits each class and interface once
at the most (usually only a “shallow” inheritance tree is
visited), taking a constant time per visit, in order to identify
a sealed method. Overall, per method, the execution time
of the algorithm is at most linear in the size of the CHG of
the analyzed package.

5. EXPERIMENTS

The algorithm for identifying sealed calls was implemented
and tested on several benchmarks. Calls that are identified
as sealed calls can be devirtualized safely, for instance by
converting invokevirtual to invokespecial as suggested
by Jax [36]. Sealed calls to methods of interfaces may benefit
from a similar strength-reduction optimization, by convert-
ing invokeinterface to invokevirtual as proposed by the
Sable research group [17], however only few such candidates
were found in our experiments. The potential performance
improvements of eliminating virtual function calls in C++
programs have been studied by several researchers [9, 2, 15,
30]. In addition to reducing the overhead of dynamic dis-
patch by devirtualization, monomorphic sealed calls can be



safely inlined without a guard. The potential benefit of such
direct inlining in Java is reported by Agesen and Detlefs [13,
Table 6].

In this section we present experimental results showing that
a significant percentage of the virtual calls that reside in-
side certain library and application packages are identified
as sealed calls by our algorithm. An interesting observation
is that a very high percentage of the calls that were found
to be sealed have exactly one possible target, and are there-
fore good candidates for safe direct inlining. These results
indicate the strong potential of using sealed calls to enhance
analysis and optimization of Java programs.

Subsection 5.1 describes the benchmarks that were used.
Subsection 5.2 reports the number of sealed call sites found
in the benchmark packages, and Subsection 5.3 presents the
number of times sealed calls in application packages were
executed while running the benchmarks, according to pro-
filing data. Remarks regarding the experiments appear in
Subsection 5.4.

5.1 Benchmarks

Table 1 describes the Java programs used in the exper-
iments. In each benchmark we considered all the pack-
ages that contain a significant amount (100) of virtual calls
to non-final methods (for Jigsaw the threshold was 300).
Only such calls are relevant to devirtualization analysis.

The runtime library rt.jar from Java 2 JDK release 1.2 was
chosen because all its packages except for two are known to
be sealed, and because it is fairly large, diverse, and highly
reusable. Optimization improvements made to rt.jar have
great potential impact on the performance of other Java
programs.

Jigsaw [25] and pBob [5] are two large, multi-packaged server
applications. Jigsaw is an object-oriented web server of
W3C implemented in Java. Portable business object bench-
mark (pBOB) is a kernel of business logic inspired by the
TPC-C benchmark specification?. SPECjvm98 [32] can-
didates and benchmarks were chosen to represent client-
oriented programs. The analysis of application benchmarks
assumes that all packages are sealed. Note that this is a
valid assumption which does not cause security exceptions
for these applications.

5.2 Static Counts

Tables 2, 3, and 4 present static measurements regarding the
calls that reside inside rt.jar and the application packages
tested. For each package, we counted the number of virtual
call sites to non-final methods that appear in the package
(column V). We also counted how many of these virtual
calls were intra-package calls, where both caller and the orig-
inal callee belong to the same package; only such calls are
candidates to be sealed calls (column Ps). The percentage
of virtual calls that were identified as sealed, and that were
also identified as monomorphic (according to our algorithm)
are presented next (columns Ss, M; respectively). The ta-

2In accordance with the TPC’s fair use policy we note that
pBOB deviates from the TPC-C specification and is not
comparable to any official TPC result.

Table 1: Description of benchmark programs

Type Benchmark | V4 Description
Library rt.jar 52909 | Java 2 JDK release 1.2
Server Jigsaw 8322 | W3C’s web server,
version 2.0.3
pBob 1390 | Transaction processing
benchmark
SPECjvm98 | javac 2177 | Java bytecode compiler
Benchmarks | jess 828 | Java expert shell
system
jack 735 | Parser generator
check 238 | Tests JVM features
db 115 | Search and modify
a database
mpegaudio 115 | Decompress audio files
SPECjvm98 | nih 1684 | Image manipulation
Candidates raytrace 869 | Graphics raytracer
mpeg 260 | MPEG video decoding
si 208 | Interpreter for a simple
language
cst 193 | java/util class exerciser
tmix 155 | Dining philosophers
richards 114 | Threads running five
OS simulator versions
deltablue 105 | Deltablue algorithm

Vi Total number of Virtual calls to non-final methods

Table 2: Static counts for “best” rt.jar packages

Package Vs Ps Ss Mg
sun/audio 324 || 65.7 | 59.3 55.2
sun/awt/Albert 1202 || 89.5 | 45.5 | 44.8
javax/swing/text /rtf 592 || 37.8 | 37.8 | 31.2
java/awt/datatransfer 114 || 50.0 | 31.6 | 31.6
sun/jdbc/odbc 1076 || 89.9 | 27.0 | 27.0
javax/swing/text/html/parser 377 || 73.2 | 26.3 | 26.3
javax/swing/tree 1113 || 73.9 | 25.9 | 25.9
sun/security/tools 1267 || 22.7 | 22.7 | 22.7
sun/applet 688 || 39.5 | 20.5 | 20.5

Vs Number of Virtual calls

P Percentage of calls in V5 to methods of same Package
Ss Percentage of calls in V; identified as Sealed

M  Percentage of sealed and Monomorphic calls in V;

bles are sorted according to the percentage of sealed calls
(column S;), in descending order.

There are 64 packages in rt.jar with at least 100 virtual calls
to non-final methods, of which all but one are known to
be sealed. On average, 40% of the virtual calls in these
packages are intra-package calls. More than half of these
packages contain at least 5% sealed calls, where the total
average of sealed calls is 8.5%. Furthermore, on average
about 7.9% of the virtual calls are sealed and monomorphic
according to our algorithm. Table 2 shows 9 of the packages
that contain the highest percentage of sealed calls (at least

20%).

Regarding tables 3 and 4, roughly half of all the virtual
calls that were analyzed are intra-package calls. Thus there
is a large potential for sealing many virtual calls. In gen-
eral, the results obtained by our algorithm show that there
is a large variance in the number of sealed calls per pack-
age — in some packages nearly all (94.8%) virtual calls are
sealed, whereas in other packages less than 1% of the virtual
calls are sealed calls. For example, in package richards/dai
the entire class hierarchy is packaged, except for the main



Table 3: Static counts in pBob and Jigsaw packages

Package Vs P Ss Mg
pBob (prefix = com/ibm/sf/ )

BOB/infra/Collections 138 || 97.1 | 15.2 | 15.2
BOB 1129 || 45.9 | 13.8 13.6
BOB/infra/Factory 123 || 77.2 0.0 0.0
Jigsaw (prefix = org/w3c/ )

cvs 393 || 48.1 | 28.0 27.7
www/http 735 || 77.0 | 14.3 14.3
tools/resources/store 362 || 31.5 | 12.2 | 12.2
www /protocol/http 407 || 45.0 | 11.3 | 10.8
jigadm/editors 1491 || 20.1 | 8.5 8.5
tools/widgets 491 || 25.9 7.1 6.7
jigsaw/frames 950 || 25.1 | 3.7 3.7
jigsaw /servlet 724 || 29.1 | 3.2 3.2
jigsaw /filters 430 || 12.3 2.8 2.8
jigsaw/admin 452 || 40.0 | 2.4 2.4
www /protocol /http/cache 502 || 36.9 1.2 1.2
jigsaw /http 642 || 332 | 0.9 | 0.9
tools/resources 743 || 78.6 0.4 0.4
Average 45.2 7.8 7.7

Table 4: Static counts in benchmark packages

Package Vs Ps Ss Mg
SPECjvm98 Benchmarks

mpegaudio 115 65.2 | 65.2 49.6
check 238 || 53.8 | 50.4 | 50.0
jess/jess 828 || 84.7 | 36.0 | 36.0
javac 2177 || 77.4 | 10.8 6.2
jack 735 || 30.1 9.4 9.4
db 115 24.3 1.7 1.7
SPECjvm98 Candidates

richards/dai 114 || 95.6 | 94.7 | 93.9
deltablue 105 86.7 | 85.7 50.5
tmix 155 || 62.6 | 62.6 | 38.7
si 208 64.4 | 58.2 58.2
nih 1684 57.1 | 53.9 43.2
cst 193 68.9 | 12.4 12.4
mpeg 260 74.6 1.5 1.5
raytrace 869 || 98.2 0.0 0.0
Average 67.4 | 38.8 | 32.2

(Richards) class which is public, resulting in a high percent-
age of sealed calls. On the other extreme, in packages ray-
trace and com/ibm/sf/BOB/infra/Factory all classes and
methods are public, leaving no potential for sealed calls.
In package org/w3c/tools/resources, all 56 classes and 407
methods are public except for two classes and two methods
which are packaged, resulting in very few sealed calls.

For some rt.jar and SPECjvm98 packages, almost every vir-
tual intra-package call is identified by our algorithm as a
sealed call, leaving little prospect for more powerful algo-
rithms. Overall, for most packages analyzed in both rt.jar
and application benchmarks, nearly all sealed calls are shown
to be monomorphic, a fact which makes them good candi-
dates for aggressive optimizations such as direct inlining.

5.3 Dynamic Counts

Table 5 presents dynamic measurements regarding calls that
were executed while running the SPECjvm98 candidates and
benchmarks. These programs were executed with size ‘10’
to produce dynamic profiles. Therefore, the results do not
follow the official SPEC rules.

Table 5: Dynamic counts in benchmark packages

Benchmark \Z] P, Sa My
SPECjvm98 Benchmarks

mpegaudio 26650 99.8 6.2 6.1
check 68 29.8 1.2 1.2
jess 20789 93.7 5.9 5.9
javac 3416 62.0 14.4 9.6
jack 3962 39.2 17.5 17.5
db 326 22.5 0.0 0.0
SPECjvm98 Candidates

richards 88031 || 100.0 | 100.0 | 88.2
deltablue 46681 || 100.0 | 100.0 | 71.1
tmix 71834 99.1 98.8 76.0
si 10973 47.3 33.0 | 33.0
nih 5 18.0 3.5 3.5
cst 2124 21.6 21.1 21.1
mpeg 21987 67.0 0.0 0.0
raytrace 60051 100.0 0.0 0.0
Average 64.3 28.7 | 23.8

Vg Number of invoked Virtual calls (in thousands)

P;  Percentage of calls in V; to methods of same Package
Sq  Percentage of calls in Vj; identified as Sealed

M, Percentage of sealed and Monomorphic calls in V,

Dynamic measurements are not presented for pBob and Jig-
saw, due to their highly configurable and interactive na-
ture. We considered all calls that originated from applica-
tion packages, since they usually accounted for most of the
executed calls. For each benchmark we counted how many
virtual calls to non-final methods were executed (column
Va). Columns Py, S; and My are analogous to the static
measurements (Ps, Ss, M) in Tables 2, 3 and 4.

Of all virtual calls executed, a high percentage (about 64%)
were intra-package calls, and more than 28% were found
to be sealed calls by our algorithm. On the average, while
running a benchmark, our algorithm identified as sealed calls
nearly 45% of the intra-package calls that are executed, with
some benchmarks reaching close to 100%. As with the static
counts (see Section 5.2), for many benchmarks all sealed
calls are also shown to be monomorphic.

The variance in the dynamic results is huge. For three
benchmarks (richards, deltablue and tmix) almost all (more
than 98.8%) virtual calls are identified as sealed. On the
other extreme, in four benchmarks (check, db, mpeg and
raytrace) a very small percentage (less than 1.2%) of the
virtual calls were identified as sealed.

Several benchmarks (check, nih, jack and db) executed a
significant number of calls originating from JDK packages.
In these cases, about 6.6% of the virtual calls from the JDK
were identified as sealed and monomorphic.

5.4 Statistical Remarks

The profiling data used (the standard java -prof tool) re-
ports the number of times a certain method calls another
method?®. If one method contains several call-sites, each po-
tentially targeted at the same target method, then the dis-
tribution of the method-to-method frequency among these
call-sites is not known to us. However, there was no prob-

3Note that for calls to or from native methods, the callee
or caller were reported as unknown. Such cases were very
scarce and had no significant effect on the statistics.



lem to determine the accurate invocation count for almost
all sealed calls that appear in the benchmarks.

In order to build the CHG of a package we analyze the byte-
codes (the invokevirtual and invokeinterface bytecodes
in particular) to locate virtual call sites, and use the callee-
class annotated at each call-site. There may be a difference
between the callee class that appears in the Java source code,
and the callee class annotated in the bytecode. This happens
when the original callee class does not contain a declaration
of the called method. In such cases, the annotated callee
class is a superclass of the original callee class that contains
the required declaration. It is conservative to use the anno-
tated callee class (see [13, page 264] for further details).

6. CONCLUDING REMARKS

Using the default access permission of packaged classes, in-
terfaces and methods together with the ability to seal Java
packages, we are able to determine complete sets of tar-
gets for certain calls. In this paper we have proposed a
type of Class-Hierarchy Analysis that identifies sealed calls,
which for some cases identifies nearly all intra-package calls
as sealed calls. In some SPECjvm98 packages, almost all
intra-package calls are identified by our algorithm as sealed,
and a significant number of sealed calls are invoked while
running these benchmarks. In the widely used Java 2 rt.jar
library, about 10% of the packages contain a significant per-
centage of sealed calls (20-60%), and in more than half
of the packages, at least 5% of all virtual calls are sealed
calls. For many packages all sealed calls are also shown to
be monomorphic.

Our analysis supports inter-procedural analyses such as im-
mutability and escape analysis, and enables aggressive opti-
mizations such as direct inlining. It is efficient and static
in nature — it can support both dynamic compilers by
encoding the results as bytecode annotations, and static
pre-runtime compilers or bytecode-to-bytecode transform-
ers. The entire analysis and optimizations can be validated
instantly at runtime when the package is first loaded from its
JAR file by verifying the seal, version, and signature. There
is no need for complex dependence models and mechanisms
that check multiple files and timestamps, or for sophisticated
recompilation techniques.

Our algorithm actually identifies sealed methods — meth-
ods that can be called only from within the same package,
where each such call is guaranteed to be a sealed call. This
analysis may be enhanced in several possible ways. Addi-
tional calls might be sealed by considering the specific con-
text of each individual call site: data-flow analysis can be
used to better determine the possible types of the receiver
object. Recently, Sreedhar, Burke and Choi [33] presented
a framework which addresses similar issues using dataflow
analysis. Such techniques are significantly more complex
than our proposed CHA-type algorithm. Moreover our ex-
periments show that in many cases our algorithm is able
to identify most of the calls that can potentially be sealed,
leaving limited prospects for more powerful tools.

Another way to try and enhance our analysis is to use live-
ness information (as in Rapid-Type Analysis [4]). For in-
stance, packaged classes or classes which do not have public

or protected comstructors can be considered live only if
they are instantiated within the package. There is how-
ever little hope of sealing additional calls this way, since
a public class, that prevents a call from being sealed ac-
cording to our algorithm, must be considered live (if it has
a public or protected constructor). Liveness information
can potentially reduce the number of targets a sealed call
is known to have. However, our algorithm shows that for
many SPECjvm98 and rt.jar packages, all sealed calls are
monomorphic.

A related problem is to try and identify all possible callers
of a given method, which is also very important for inter-
procedural optimizations (e.g., inter-procedural redundancy
elimination, dead method removal [36]). One condition that
is sufficient and efficient for this purpose is to check if the
method is a packaged method in a sealed and signed package.
Sealed methods also belong to this category, since they can
be called only from within their package (and from native
code or via reflection).

7. ACKNOWLEDGEMENTS

The authors would like to thank Joseph (Yossi) Gil for his
many constructive suggestions, Bilha Mendelson, Sara Porat
and Daniel Hicks for helpful discussions, Chani Sacharen for
useful editorial remarks, and the anonymous reviewers of
OOPSLA and ECOOQOP for their feedback.

8. REFERENCES
[1] O. Agesen and U. Hélzle. Type feedback vs. concrete
type inference: A comparison of optimization
techniques for object-oriented languages. In
Proceedings of the 10th Annual Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), pages 91-107, Oct 1995.

[2] G. Aigner and U. Hélzle. Eliminating virtual function
calls in c++ programs. In Proceedings of the 10th
European Conference on Object-Oriented
Programming (ECOOP), pages 142-166, July 1996.

[3] A. Azevedo, A. Nicolau, and J. Hummel. Java
annotation-aware just-in-time (ajit) compilation
system. In Proceedings of the ACM 1999 Conference
on Java Grande, pages 142-151, June 1999.

[4] D. F. Bacon and P. F. Sweeney. Fast static analysis of
c++ virtual function calls. In Proceedings of the 11th
Annual Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA),
pages 324-341, Oct 1996.

[6] S. J. Baylor, M. Devarakonda, S. Fink, E. Gluzberg,
M. Kalantar, P. Muttineni, E. Barsness, S. Munroe,
R. Arora, , and R. Dimpsey. Java server benchmarks.
IBM Systems Journal, 39(1):21-56, 2000.

[6] B. Blanchet. Escape analysis for object oriented
languages, application to java. In Proceedings of the
1999 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA ), pages 20-34, Nov 1999.

[7] Z. Budimli¢ and K. Kennedy. Prospects for scientific
computing in polymorphic, object-oriented style. In



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Proceedings of the 9th SIAM Conference on Parallel
Processing for Scientific Computing, March 1999.

M. G. Burke, J. Choi, S. Fink, D. Grove, M. Hind,
V. Sarkar, M. J. Serrano, V. C. Sreedhar,

H. Srinivasan, and J. Whaley. The jalapeno dynamic
optimizing compiler for java. In Proceedings of the
ACM 1999 Conference on Java Grande, pages
129-141, June 1999.

B. Calder and D. Grunwald. Reducing indirect
function call overhead in c++ programs. In
Conference Record of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 397-408, Jan
1994.

J. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and
S. Midkiff. Escape analysis for java. In Proceedings of
the 1999 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), pages 1-19, Nov 1999.

J. Dean, D. Grove, and C. Chambers. Optimization of
object-oriented programs using static class hierarchy
analysis. In W. Olthoff, editor, Proceedings of the 9th
European Conference on Object-Oriented Programming
(ECOOP), pages 77-101. Springer-Verlag, Aug 1995.

G. DeFouw, D. Grove, and C. Chambers. Fast
interprocedural class analysis. In Proceedings of the
25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages
222-236, Jan 1998.

D. Detlefs and O. Agesen. Inlining of virtual methods.
In R. Guerraoui, editor, Proceedings of the 15th

European Conference on Object-Oriented Programming
(ECOOP), pages 258-278. Springer-Verlag, June 1999.

J. Dolby. Automatic inline allocation of objects. In
Proceedings of the 1997 ACM SIGPLAN Conference
on Programming Language Design and
Implementation (PLDI), pages 7-16, May 1997.

K. Driesen and U. Holzle. The direct cost of virtual
function calls in c++. In Proceedings of the 11th
Annual Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA),
pages 306-323, Oct 1996.

N. Feinberg, S. E. Keene, R. O. Mathews, and P. T.
Withington. The Dylan Programming Book.
Addison-Wesley, 1997.

E. Gagnon and L. Hendren. Intra-procedural inference
of static types for java bytecode. Technical Report
1999-1, Sable Research Group, McGill University,
March 1999.

J. Gil and A. Ttai. The complexity of type analysis of
object oriented programs. In Proceedings of the 12th
European Conference on Object-Oriented
Programming (ECOOP), pages 601-634, July 1998.

J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

32]

[33]

D. Grove, G. DeFouw, J. Dean, and C. Chambers.
Call graph construction in object-oriented languages.
In Proceedings of the 1997 ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), pages
108-124, Oct 1997.

D. P. Grove. Effective Interprocedural Optimization of
Object-Oriented Languages. PhD thesis, University of
Washington, 1998.

U. Holzle, C. Chambers, and D. Ungar. Debugging
optimized code with dynamic deoptimization. In
Proceedings of the ACM SIGPLAN ’92 Conference on
Programming Language Design and Implementation
(PLDI), pages 32-43, June 1992.

The java hotspot performance engine architecture.
Available at http://-

www.javasoft.com /products/hotspot/whitepaper.html,
April 1999.

K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi,

T. Ogasawara, T. Suganuma, T. Onodera,

H. Komatsu, and T. Nakatani. Design,
implementation, and evaluation of optimizations in a
just-in-time compiler. In Proceedings of the ACM 1999
Conference on Java Grande, pages 119-128, June
1999.

Jigsaw - the w3c’s web server. Available at
http://www.w3c.org/Jigsaw.

Jove super optimizing deployment environment for
java. Available at
http://www.instantiations.com/jove/jovereport.htm.

S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

P. D. O’brien, D. C. Halbert, and M. F. Kilian. The
trellis programming environment. In Conference
Proceedings on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), pages
91-102, Oct 1987.

H. D. Pande and B. G. Ryder. Static type
determination for c++. In Proceedings of the Sizth
Useniz C++ Technical Conference, pages 85-97, April
1994.

S. Porat, D. Bernstein, Y. Fedorov, J. Rodrigue, and
E. Yahav. Compiler optimization of c++ virtual
function calls. In Proceedings of the Second Conference
on Object-Oriented Technologies and Systems
(COOTS), pages 3-14, Jun 1996.

S. Porat, B. Mendelson, and I. Shapira. Sharpening
global static analysis to cope with java. In Proceedings
of CASCON ‘98 Conference, pages 303-316, Nov 1998.

Spec jvm98 benchmarks. Available at
http://www.spec.org/osg/jvm98, August 1998.

V. C. Sreedhar, M. Burke, and J. Choi. A framework
for interprocedural optimization in the presence of
dynamic class loading. In Proceedings of the ACM



34]

[35]

[36]

SIGPLAN ‘00 Conference on Programming Language
Design and Implementation (PLDI), pages 196-207,
June 2000.

Sun Microsystems. Java 2 Software Development Kit
version 1.2.2, July 1999. Available at
http://java.sun.com/products/jdk/1.2/, See there
docs/guide/extensions/spec.html#tsealing.

V. Sundaresan, L. Hendren, C. Razafimahefa,
R. Valle-Rai, P. Lam, E. Gagnon, and C. Godin.
Practical virtual method call resolution for java.
Technical Report 1999-4, Sable Research Group,
McGill University, Nov 1999.

F. Tip, C. Laffra, P. F. Sweeney, and D. Streeter.
Practical experience with an application extractor for
java. In Proceedings of the 1999 ACM SIGPLAN
Conference on Object-Oriented Programming Systems,

37]

[38]

[39]

Languages and Applications (OOPSLA), pages
292-305, Nov 1999.

Towerj3 - a new generation native java compiler and
runtime environment. Available at
http://www.towerj.com/products/-
whitepapergnj.shtml and also

whitepapers3.shtml.

R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan. Soot - a java bytecode
optimization framework. In Proceedings of CASCON
‘99 Conference, Nov 1999.

J. Whaley and M. Rinard. Compositional pointer and
escape analysis for java programs. In Proceedings of
the 1999 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), pages 187-206, Nov 1999.



