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ABSTRACTDetermining the potential targets of virtual method invo
a-tions is essential for inter-pro
edural optimizations of obje
t-oriented programs. It is generally hard to determine su
htargets a

urately. The problem is espe
ially diÆ
ult fordynami
 languages su
h as Java, be
ause additional targetsof virtual 
alls may appear at runtime. Current me
hanismsthat enable inter-pro
edural optimizations for dynami
 lan-guages, repeatedly validate the optimizations at runtime.This paper addresses this predi
ament by proposing a novelte
hnique for 
onservative devirtualization analysis, whi
happlies to a signi�
ant number of virtual 
alls in Java pro-grams. Unlike previous work, our te
hnique requires neitherwhole program analysis nor runtime information, and in-
urs no runtime overhead. Our solution is very eÆ
ient to
ompute and is based on a newly introdu
ed, seemingly un-related se
urity feature of Java �le ar
hives. On average, ouranalysis \seals" (safely devirtualizes) about 39% of the vir-tual 
alls (to non-�nal methods) that appear in SPECjvm98programs, and about 29% of the 
alls invoked while exe
ut-ing these programs. In the runtime library rt.jar, about 10%of the pa
kages 
ontain a signi�
ant per
entage (20{60%) ofsealed 
alls, with a total average of about 8.5%. Most ofthese 
alls are also shown to be monomorphi
, a fa
t whi
h
an be safely exploited by aggressive inter-pro
edural op-timizations su
h as dire
t inlining. These results indi
atethat our te
hnique has a strong potential for enhan
ing theanalysis and optimization of Java programs.
Categories and Subject DescriptorsD.1.5 [Programming Te
hniques℄: Obje
t-oriented Pro-gramming; D.3.2 [Programming Languages℄: LanguageClassi�
ations|Java, Obje
t-oriented Programming ; D.3.4[Programming Languages℄: Pro
essors|Compilers, Op-timization, Run-time environments
General TermsLanguages, Performan
e

KeywordsJava, obje
t-oriented programming, inter-pro
edural anal-ysis, 
all devirtualization, method inlining, 
lass hierar
hygraph, 
all graph, sealed pa
kage
1. INTRODUCTIONInter-pro
edural optimizations of obje
t-oriented programsare based on the determination of the potential targets ofvirtual method invo
ations. This is a 
hallenging problemespe
ially for dynami
 languages su
h as JavaTM 1, be
auseadditional targets of virtual 
alls may appear at runtime.In 
ertain languages the programmer 
an prohibit methodsfrom being overridden, thereby resolving 
alls to these meth-ods. Calls to su
h \�nal" methods are not 
onsidered to bevirtual 
alls in this paper. Existing te
hniques that deter-mine the targets of virtual 
alls in dynami
 languages eitherrestri
t dynami
 
lass loading (by relying on the user [36℄or by applying whole-program analysis [4℄), or in
i
t a run-time overhead. In addition, some solutions imply restri
-tions on further optimizations and some require spe
ial run-time me
hanisms. An ideal solution should have no runtimeoverhead and restri
tions. So far, all te
hniques fall short ofthis ideal.Our goal is to over
ome all these drawba
ks by identifying anew type of 
alls in Java whose set of potential targets 
an bedetermined 
ompletely and expli
itly in advan
e, even priorto runtime. More spe
i�
ally, we say that a 
all is a sealed
all if it appears inside a sealed Java pa
kage [34℄, and hasthe property that all its targets are guaranteed to belong tothe same pa
kage. Sealed 
alls 
an be identi�ed by analyz-ing single Java pa
kages, without relying on whole-programanalysis. Our analysis 
an be viewed as an appli
ation ofalmost whole program 
ompilation [7℄.Identifying sealed 
alls and their potential targets fa
ilitatesaggressive inter-pro
edural intra-pa
kage optimizations. Forexample, if a sealed 
all has only one potential target, it 
anbe inlined safely without any pre
onditions. In addition tothe immediate appli
ation to devirtualization and inlining,our analysis 
learly 
ontributes to other inter-pro
eduralanalyses and optimizations su
h as immutability and es
apeanalyses [6, 10, 13, 39℄, and obje
t inlining [7, 14℄. Our te
h-nique 
an be implemented eÆ
iently and 
an support stati

ompilers, byte
ode-to-byte
ode transformers, or dynami

ompilers by using byte
ode annotations [3, 36℄. Sin
e our1Java is a trademark of Sun Mi
rosystems, In
.



analysis is applied to Java byte
ode, it 
an be used for awide variety of languages that produ
e su
h byte
ode.The results obtained by our te
hnique indi
ate a signi�
antpotential for pra
ti
al improvements in analyses and opti-mizations. In about half of the pa
kages in the runtime li-brary rt.jar (whose pa
kages are known to be sealed ex
eptfor two), 5{60% of the virtual 
alls (to non- final methods)are sealed 
alls a

ording to our analysis. On average, our al-gorithm identi�es nearly 39% of all virtual 
alls that appearin pa
kages of SPECjvm98TM [32℄ ben
hmarks and 
andi-dates as sealed 
alls (assuming pa
kages are sealed), withhalf of the pa
kages s
oring between 50% and 95%. Almost29% of all virtual 
alls invoked while running these ben
h-marks were identi�ed as sealed 
alls. For many pa
kages,all sealed 
alls are shown to have only one possible target,whi
h makes them good 
andidates for dire
t inlining.The rest of this paper is organized as follows. Se
tion 2provides a ba
kground and des
ribes related work on de-virtualization of 
alls in dynami
 languages. Se
tion 3 de-�nes sealed 
alls, and Se
tion 4 des
ribes an algorithm foridentifying sealed 
alls and their possible targets. Se
tion 5provides data on the extent of prevalen
e of sealed 
alls.Con
lusions and dire
tions for future work are presented inSe
tion 6.
2. BACKGROUND

2.1 The Devirtualization ProblemThe exe
ution time of programs 
an be redu
ed 
onsiderablyby using 
ompiler optimizations whi
h better exploit hard-ware resour
es [27℄. Programs that 
onsist of many shortpro
edures require inter-pro
edural optimizations in orderto obtain eÆ
ient optimized 
ode. One of the most relevantinter-pro
edural optimization is inlining, whi
h 
an improveperforman
e by redu
ing the overhead of 
alls and by in-
reasing opportunities for other optimizations. In order toperform inlining and other inter-pro
edural optimizations itis essential to identify the targets of 
alls.Obje
t-oriented programs promote the use of short meth-ods to en
apsulate fun
tionality and as a means of modu-larity and abstra
tion. Su
h methods are usually virtual, afa
t whi
h 
ompli
ates inter-pro
edural optimizations. Ea
htime a 
all to a virtual method is exe
uted, the de
laredmethod or one of several methods whi
h override it is a
tu-ally invoked, depending on the dynami
 type of the re
eiverobje
t. The ability to identify in advan
e the potential tar-gets of a virtual 
all, known as 
all devirtualization, is 
ru
ialfor optimizing obje
t-oriented programs and has re
eivedmu
h attention in re
ent years (see, for example, [1, 11, 12,21, 20, 29, 30, 31℄).Determining the pre
ise set of potential targets of virtual
alls is related to the problem of obje
t-oriented type anal-ysis, whi
h is known to be diÆ
ult [18℄. A set of poten-tial targets 
an be determined, at least 
onservatively, byperforming whole-program analysis on the entire appli
ation(see [4, 12, 20, 29, 35, 36, 38℄). One simple approximationof the targets of a 
all is the set of all methods that overridethe 
alled method. This set 
an be 
onstru
ted eÆ
ientlyusing 
lass hierar
hy analysis [11, 24, 31℄.

Various te
hniques have been developed in re
ent years tore�ne the set of possible targets of a virtual 
all, produ
-ing subsets of the set of all overriding methods. Liveness(rapid type) analysis [4, 31℄ was used to exempt dead meth-ods (methods guaranteed never to be invoked during ex-e
ution of the program) from being potential target 
andi-dates. Variable type analysis was used by the Sable resear
hgroup [35, 38℄ to obtain more a

urate results than rapidtype analysis. A variety of 
ow-sensitive and 
ow-insensitivetype analyses are des
ribed by Grove [21℄. All these te
h-niques in
luding the basi
 \all-overridings" approximationrely on having all the 
lasses that might parti
ipate at run-time, �xed and available at analysis time.
2.2 Dynamic LanguagesIn dynami
 languages, the 
omplete set of 
lasses that willparti
ipate in the exe
ution of an appli
ation may not beknown in advan
e. Dynami
ally loaded 
lasses may be en-
ountered only at runtime, when they are referen
ed forthe �rst time. Inter-
lass analysis su
h as 
all devirtual-ization may be invalidated when new unanti
ipated 
lassesare loaded. In several languages su
h as Dylan [16℄, Java [19℄and Trellis [28℄, the programmer 
an prohibit 
lasses fromhaving sub
lasses or methods from being overridden. Thisenables related 
alls to be devirtualized safely, without therisk of future invalidation, but lays a burden on the pro-grammer and limits potential extension and reuse of the
ode. This paper deals with 
alls whi
h are not expli
itlyrestri
ted to a single target by the programer.There are several approa
hes that enable inter-
lass analy-sis and optimizations for dynami
 languages su
h as Java.One approa
h is to assume that all relevant 
lasses and in-terfa
es are supplied by the user in advan
e and revert totraditional stati
 
ompilation te
hniques. Su
h an approa
hwas adopted by the JoveTM optimizing 
ompiler [26℄ whi
hanalyzes and 
ompiles entire Java appli
ations. The 
om-piler inside the TowerJ3.0TM deployment environment [37℄also relies on having all relevant 
lasses available for its �-nal step. The major drawba
k of su
h a whole-programoptimization approa
h is that the requirement of having allrelevant 
lasses available in advan
e 
annot always be satis-�ed.A se
ond approa
h is to assume that new 
lasses may appearat runtime and prepare me
hanisms for dealing with su
hunanti
ipated 
lasses. The simplest of su
h me
hanisms isa pre
ondition that 
he
ks the a
tual type of the re
eiverobje
t before exe
uting the inlined 
ode. The Jalape~no dy-nami
 
ompiler uses su
h guards [8℄. A similar but more ro-bust method test pre
ondition was re
ently suggested [13℄.Pre
onditions are easily used by both stati
 and dynami

ompilers, but they prevent other optimizations from tak-ing full advantage of the in
reased method size provided byinlining.More sophisti
ated me
hanisms for dealing with unanti
-ipated 
lasses dete
t invalidated optimizations at runtimeand 
orre
t them using dynami
 re
ompilation. The JavaHotspotTM 
ompiler [23℄ uses su
h a dynami
 deoptimiza-tion me
hanism. Su
h me
hanisms 
an dis
over if a newlyloaded 
lass invalidates any existing inlinings and 
orre
t ev-ery su
h inlining immediately by re
ompiling the appropri-



ate methods. A problem 
an o

ur if a method whi
h needsto be re
ompiled is 
urrently exe
uting, a fa
t whi
h greatly
ompli
ates the re
ompilation pro
ess. A spe
ial me
hanismsu
h as on sta
k repla
ement in the Self system [22℄ 
an solvethis problem.Detlefs and Agesen [13℄ re
ently identi�ed a family of situa-tions (
alled preexisten
e) whi
h do not require on-sta
k re-pla
ement. In su
h situations 
urrently-exe
uting methodsthat 
ontain invalidated inlinings are allowed to 
ontinue ex-e
uting the original 
ode until they exit. Only subsequentinvo
ations of these methods are to exe
ute the re
ompiled
ode, a fa
t whi
h simpli�es the re
ompilation pro
ess.Ishizaki et al.[24℄ 
orre
t invalidated inlinings by repla
inga single instru
tion (a dire
t 
all or the �rst inlined instru
-tion) with a jump to the original virtual 
all. This saves re-
ompilation time but in
reases the footprint sin
e both theoriginal 
all and the inlined 
ode are present at all times,and it also limits the opportunities for other optimizationssin
e the inlined 
ode must be kept 
ontiguous.
3. SEALED CALLSExisting te
hniques for determining the potential targets ofvirtual 
alls either restri
t dynami
 
lass-loading (by rely-ing on the user or by applying whole-program analysis), orin
i
t a runtime overhead. Our te
hnique over
omes thesedrawba
ks. The main obsta
le that prevents stati
 devirtu-alization is the possibility that a dynami
ally loaded 
lasswill override the 
alled method and thereby provide a newtarget for the 
all. This obsta
le 
an be over
ome by makingsure that no new sub
lass of the 
alled 
lass 
an be loaded,or that the 
alled method 
annot be overridden by new sub-
lasses. In Java, one trivial way to ensure this is to de
larethe 
alled 
lass or the 
alled method final, but this is notalways desired or appli
able.Our te
hnique addresses 
alls to methods that are not de-
lared final (and whose 
lass is not final). In su
h 
ases,additional features are needed to enable stati
 devirtualiza-tion. Two key ingredients 
an be 
ombined to a
hieve ourgoal: the �rst restri
ts the freedom to dynami
ally load new
lasses and the se
ond restri
ts the ability to sub
lass andoverride the 
alled 
lass and method. The general idea is toensure that (i) all the targets of a virtual 
all must belongto a 
ertain subset of 
lasses and that (ii) no new 
lass 
anbe added to this subset without violating the standard rulesof the language. In our 
ase these subsets 
orrespond toJava pa
kages whi
h are sealed , as explained below. Whendealing with a sealed pa
kage it is safe to assume that allthe relevant 
lasses (i.e., those that belong to the pa
kage)are available for analysis in advan
e.There are several important di�eren
es between our te
h-nique and the utilization of the final modi�er. The finalmodi�er is part of the Java programming language, whilesealing is external to the language de�nition. The finalkeyword disables further extension of a 
lass or method,while sealing for
es su
h extensions to belong to other pa
k-ages. The final modi�er 
an be used to resolve monomor-phi
 
alls to 
lass methods, while sealing 
an devirtualizepolymorphi
 
alls to 
lasses and interfa
es. In general, itis not surprising that final redu
es polymorphism, but it

is quite unexpe
ted that a se
urity feature applied during
lass-loading has su
h an e�e
t.The usage of the final modi�er leaves enough room forother devirtualization te
hniques. Spe
i�
ally, our approa
hleads to a signi�
ant amount of additional safe devirtual-ization. Hen
eforth, the term virtual 
all denotes 
alls tovirtual non-final methods.
3.1 Sealed PackagesIn Java, every 
lass belongs to one spe
i�
 pa
kage. Ea
hpa
kage 
an have, as members, several 
lasses whi
h are usu-ally logi
ally and fun
tionally related. The 
lasses of pa
k-ages 
an be aggregated into one JAR (Java AR
hive) �le,together with additional information. Several JAR �les anddire
tories usually apply when a Java program is exe
uted,as spe
i�ed by the \
lass-path". During exe
ution, when a
lass is referen
ed for the �rst time, the Java virtual ma
hine(JVM) sear
hes the appli
able JAR �les and dire
tories forthe desired 
lass.Starting with version 1.2 of the Java Software DevelopmentKit (SDK 1.2.2 [34℄), Java pa
kages that reside inside JAR�les 
an be sealed. If a pa
kage is sealed, all 
lasses de�ned inthat pa
kage must originate from the same JAR �le, other-wise an ex
eption is thrown (\java.lang.Se
urityEx
eption").When a pa
kage is sealed inside a JAR �le we are 
ertainthat every appli
ation will either load all the 
lasses thatbelong to this pa
kage from this JAR �le, or not load any.It is not unreasonable to expe
t that many pa
kages will besealed. All standard 
ore Java pa
kages in the Java 2 run-time library rt.jar are sealed ex
ept for two [34℄. The origi-nal motivation to seal pa
kages was to help enfor
e se
urityand 
onsisten
y within a version. Grouping together setsof 
lass �les is also very important for inter-
lass analysis.To ensure the persisten
e of su
h analysis it is importantto dete
t 
hanges made to the pa
kage (e.g., modi�
ationand removal of existing 
lasses, insertion of new 
lasses, un-sealing the pa
kage). This is provided for in the form ofJAR-�le signing and versioning, whi
h are also available inSDK 1.2.2.Currently Java provides sealing only of individual pa
kages.It is possible to seal an entire JAR �le, thereby sealing allits pa
kages (unless stated otherwise). However, nothingbinds two sealed pa
kages together, even if they belong tothe same JAR �le. An appli
ation 
an load all 
lasses ofone sealed pa
kage p1 from a 
ertain JAR �le and load nonefrom another sealed pa
kage p2, if p2 is available at a lo
a-tion earlier in the 
lass-path. Providing the ability to sealseveral pa
kages together, may in
rease the potential for safedevirtualization in the future.Sealing a pa
kage provides the �rst ingredient of identifyingsealed 
alls, by de�ning a set of 
lasses to whi
h no addi-tional 
lass 
an be in
luded. The other ingredient, provingthat all the targets of a virtual 
all must belong to su
h asubset, is presented in the next subse
tion.
3.2 The Default (package) ModifierThe a

ess restri
tions imposed by the default (pa
kage) a
-
ess modi�er of 
lasses, interfa
es and methods 
an be used



to prove that all the targets of a virtual 
all must belong toone spe
i�
 pa
kage. A 
all to a virtual method m of 
lass
1 (denoted by 
1::m) 
an only target methods that overridemethod m. Method 
2::m 
an override method 
1::m onlyif 
2 extends 
1 and has a

ess to 
1::m. The a

ess and ex-tension 
an be either dire
t or indire
t. There is one ex
ep-tion to the above rule des
ribed later, where 
2::m overrides
1::m even though 
2 does not extend 
1.Java has several 
lass and method modi�ers, whi
h are rel-evant to our analysis. In this do
ument, the term \
lass"refers to both 
lasses and interfa
es, unless stated other-wise. A 
lass 
an be de
lared publi
, in whi
h 
ase it 
anbe dire
tly extended by 
lasses from any pa
kage (providedit is not de
lared final). Classes whi
h are not de
laredpubli
 
an be dire
tly extended only by 
lasses of the samepa
kage, and will be referred to as pa
kaged 
lasses. Themethods of a 
lass 
an be de
lared publi
, prote
ted, orprivate; the methods of an interfa
e are impli
itly de
laredpubli
. Publi
 and prote
ted methods 
an be a

essed fromoutside the pa
kage. Private methods 
an be a

essed onlyfrom within the same 
lass and 
annot be overridden (theyare impli
itly final). Finally, a method that is not de
laredpubli
, prote
ted, or private, is dire
tly a

essible onlyfrom within its pa
kage, and will be referred to as a pa
kagedmethod.Pa
kaged 
lasses and methods 
an be dire
tly extended anda

essed only from within their pa
kage, but they mightbe extended and a

essed indire
tly from other pa
kagesthrough transitivity. For example, a pa
kaged 
lass 
1 
anhave a dire
t publi
 sub
lass 
2 within the same pa
kage. Itis now possible for a 
lass 
3 from a di�erent pa
kage to di-re
tly extend 
lass 
2, thereby indire
tly extending 
lass 
1.Similar s
enarios enable indire
t a

ess to pa
kaged methodsfrom outside their pa
kage. The potential of su
h indire
textension and a

ess enables the targets of a 
all to a pa
k-aged method to belong to di�erent pa
kages.There is one spe
ial 
ase in Java where a method of a 
lass
2::m 
an override a method of an interfa
e 
1::m although
2 does not implement 
1 (see [19, pages 166{167℄). Thishappens when another \
ombining" 
lass (
3) implementsinterfa
e 
1, extends 
lass 
2, and inherits method 
2::m asan overriding implementation for 
1::m. If 
1 is a pa
kagedinterfa
e and 
2 belongs to a di�erent pa
kage, we obtainanother 
ase of inter-pa
kage overriding.It is thus possible to �nd all the methods that overridemethod 
1::m by s
anning the sub
lasses of 
1, and o

a-sionally examining super
lasses of su
h sub
lasses. The al-gorithm presented in the next se
tion identi�es sealed 
allsby 
he
king if the 
alled method is a

essible and if its 
lass
an be extended, either dire
tly or indire
tly from outsidetheir pa
kage.
4. IDENTIFYING SEALED CALLSThis se
tion presents an algorithm for identifying sealed
alls, and for providing a 
omplete (
onservative) set of tar-gets for ea
h sealed 
all. Aggressive inter-pro
edural analy-sis and optimization 
an be applied safely to su
h 
alls.Calls are 
ategorized by the algorithm as being sealed 
alls

based on information related only to the 
alled method.Thus, the algorithm a
tually identi�es sealed methods |methods that 
an be 
alled only from within the same pa
k-age, where ea
h su
h 
all is guaranteed to be a sealed 
all. Itis possible to mark non-overridden sealed methods final, orsuggest su
h de
larations to the programmer, as proposedby Jax [36℄.A detailed des
ription of the algorithm is given in Subse
-tion 4.1. Our algorithm is based on a 
lass hierar
hy graphof a single sealed pa
kage, without taking into a

ount anyout-of-pa
kage information, as explained in Subse
tion 4.2.
4.1 The AlgorithmConsider a 
all to method m of 
lass or interfa
e 
, denotedby 
::m. The following two steps determine whether or notthe 
all is a sealed 
all. First, the 
lasses and interfa
eswhi
h belong to the pa
kage of 
 are analyzed and their hi-erar
hi
al inheritan
e relationships are re
orded in the formof a Class Hierar
hy Graph (CHG). Next, a standard sear
hfor all methods overriding method 
::m is performed withinthe pa
kage (based on the CHG) to determine if method
::m 
an be overridden by methods from other pa
kages.The 
all is a sealed 
all if and only if we have veri�ed thatall overriding methods of 
::m must be 
on�ned to 
's pa
k-age.The sub
lasses of 
 that 
an potentially override method mor inherit su
h an overriding implementation from a super-
lass are traversed along this sear
h. These 
lasses are thesub
lasses d that extend 
lass 
 (or implement interfa
e 
)dire
tly or indire
tly, with the ex
eption that if a 
lass de-
lares method m as final all its sub
lasses are exempted.The sear
h is aborted if a publi
 non-final 
lass d is foundthat rede
lares method m as publi
 or prote
ted and notfinal, or inherits su
h a de
laration from a super
lass. Inthis 
ase, the original 
all to 
::m is not a sealed 
all be
ause
lass d 
an be extended by a 
lass e from another pa
kageand e will be able to override 
::m. If no su
h 
lass d isfound, the 
all to 
::m is a sealed 
all.Figure 1 presents an implementation for su
h an algorithmthat determines whether a 
all to 
::m is a sealed 
all ornot. Gathering the targets of a sealed 
all is a simple partof our algorithm, and has been omitted for 
larity. The twomethodIsSealed fun
tions handle the 
ases where 
 is a 
lassor an interfa
e. The fun
tion methodIsExposed re
ursivelys
ans the inheritan
e tree rooted at the given 
lass, anddetermines if the given method 
an be overridden from adi�erent pa
kage. Code related to the 
he
kRoots 
ag isexplained in the next subse
tion.
4.2 Package Based Class Hierarchy GraphOur underlying assumption is that the 
lasses of a singlesealed pa
kage are available for analysis, and nothing 
anbe assumed about 
lasses of other pa
kages. Therefore theanalysis for building the CHG of a pa
kage must be basedonly on information internal to the pa
kage. However, itmay be ne
essary to examine 
lasses of other pa
kages inorder to dete
t 
ertain inheritan
e relations in the CHG. Forinstan
e, suppose a 
lass of pa
kage p extends a 
lass fromanother pa
kage, whi
h in turn extends a 
lass of pa
kagep. This way the former 
lass indire
tly extends the latter



Figure 1: Algorithm for Identifying Sealed Methodsboolean methodIsSealed(
lass 
, method m) f// 1. Che
k if 
 inherits m from another pa
kage
lass super  
while super does not de
lare m fsuper  the super 
lass of superif super does not belong to analyzed pa
kagereturn falseg// 2. Che
k if 
 inherits m as �nalif super de
lares m �nalreturn true// 3. Che
k re
ursively if 
 or a sub
lass of 
 exposes mglobal boolean 
he
kRoots  falseboolean mIsPubli
OrProte
ted  (super de
lares m publi
or prote
ted)if methodIsExposed(
, m, mIsPubli
OrProte
ted)return false// 4. If needed 
he
k all 
lasses re
ursively starting from rootsif 
he
kRootsforea
h 
lass root whose super
lass is not in pa
kage doif methodIsExposed(root, m, false)return falsereturn truegboolean methodIsSealed(interfa
e i, method m) fif i is a publi
 interfa
e // m is impli
itly a publi
 methodreturn falseforea
h 
lass (interfa
e) 
 implementing (extending) i doif not methodIsSealed(
, m)return falsereturn truegboolean methodIsExposed(
lass 
, method m,boolean mIsPubli
OrProte
ted) fif 
 is a �nal 
lass or de
lares m �nalreturn falseif 
 de
lares mmIsPubli
OrProte
ted (
 de
lares m publi
 or prote
ted)if 
 is a publi
 
lass ^ mIsPubli
OrProte
tedreturn trueforea
h sub
lass dire
tly extending 
 doif methodIsExposed(sub
lass, m, mIsPubli
OrProte
ted)return trueif 
 is a publi
 
lass // and m is a pa
kaged method
he
kRoots  truereturn falseg


lass and both belong to pa
kage p, even though no inheri-tan
e relationship is visible by looking only at 
lasses insidepa
kage p. One must examine the intermediate 
lass whi
hbelongs to the other pa
kage in order to 
ompletely deter-mine the inheritan
e relationship. A 
onservative way to
ope with this de�
ien
y is to assume that any two 
lassesin the pa
kage that 
an possibly extend one another through
ross-pa
kage inheritan
e, do so.Here is a s
enario involving 
ross-pa
kage inheritan
e whi
his relevant to identifying sealed 
alls. Suppose a pa
kage p
ontains two publi
 non-final 
lasses 
1 and 
3, with noinheritan
e relations visible within p. Suppose 
1 de
lares apa
kaged method m, and 
3 de
lares a similar method m aspubli
 or prote
ted. Now it is possible for a 
lass 
2 froma pa
kage other than p to extend 
1 and be extended by
3. This enables 
3::m to \smuggle" 
1::m out of pa
kage p,sin
e it overrides 
1::m and 
an be overridden from outsidep. This is however the only relevant s
enario: 
1 must bepubli
 in order to be extensible by a 
lass 
2 from outsidep and 
1::m must originally be pa
kaged for otherwise it 
anbe overridden dire
tly by methods of other pa
kages. Being
on�ned to pa
kage p, our analysis 
onservatively assumesthat su
h a 
lass 
2 always exists. Methods of interfa
es 
an-not parti
ipate in su
h s
enarios sin
e they are all publi
.The algorithms presented in Figure 1 
ope with potential
ross-pa
kage inheritan
e in the 
onservative manner ex-plained above. Classes whose dire
t super
lasses do not be-long to the analyzed pa
kage are identi�ed as root 
lasses.The sear
h for all methods overriding 
::m signals the poten-tial for 
ross-pa
kage extension when it en
ounters a publi

lass 
1 whi
h de
lares m as pa
kaged and non-final or in-herits su
h a de
laration. If su
h a signal is raised, all root
lasses (ex
ept for the root whi
h is a super
lass of 
) are
onsidered as indire
t extensions (
3) of 
 (see 
ode relatedto the 
he
kRoots 
ag in Figure 1).Regarding the 
omplexity of our algorithm, �rst note thatthe CHG of a pa
kage 
an be 
onstru
ted in time O(N+M)where N is the number of 
lasses and interfa
es, and M isthe number of inheritan
e edges. Given the CHG of thepa
kage, our algorithm visits ea
h 
lass and interfa
e on
eat the most (usually only a \shallow" inheritan
e tree isvisited), taking a 
onstant time per visit, in order to identifya sealed method. Overall, per method, the exe
ution timeof the algorithm is at most linear in the size of the CHG ofthe analyzed pa
kage.
5. EXPERIMENTSThe algorithm for identifying sealed 
alls was implementedand tested on several ben
hmarks. Calls that are identi�edas sealed 
alls 
an be devirtualized safely, for instan
e by
onverting invokevirtual to invokespe
ial as suggestedby Jax [36℄. Sealed 
alls to methods of interfa
es may bene�tfrom a similar strength-redu
tion optimization, by 
onvert-ing invokeinterfa
e to invokevirtual as proposed by theSable resear
h group [17℄, however only few su
h 
andidateswere found in our experiments. The potential performan
eimprovements of eliminating virtual fun
tion 
alls in C++programs have been studied by several resear
hers [9, 2, 15,30℄. In addition to redu
ing the overhead of dynami
 dis-pat
h by devirtualization, monomorphi
 sealed 
alls 
an be



safely inlined without a guard. The potential bene�t of su
hdire
t inlining in Java is reported by Agesen and Detlefs [13,Table 6℄.In this se
tion we present experimental results showing thata signi�
ant per
entage of the virtual 
alls that reside in-side 
ertain library and appli
ation pa
kages are identi�edas sealed 
alls by our algorithm. An interesting observationis that a very high per
entage of the 
alls that were foundto be sealed have exa
tly one possible target, and are there-fore good 
andidates for safe dire
t inlining. These resultsindi
ate the strong potential of using sealed 
alls to enhan
eanalysis and optimization of Java programs.Subse
tion 5.1 des
ribes the ben
hmarks that were used.Subse
tion 5.2 reports the number of sealed 
all sites foundin the ben
hmark pa
kages, and Subse
tion 5.3 presents thenumber of times sealed 
alls in appli
ation pa
kages wereexe
uted while running the ben
hmarks, a

ording to pro-�ling data. Remarks regarding the experiments appear inSubse
tion 5.4.
5.1 BenchmarksTable 1 des
ribes the Java programs used in the exper-iments. In ea
h ben
hmark we 
onsidered all the pa
k-ages that 
ontain a signi�
ant amount (100) of virtual 
allsto non-final methods (for Jigsaw the threshold was 300).Only su
h 
alls are relevant to devirtualization analysis.The runtime library rt.jar from Java 2 JDK release 1.2 was
hosen be
ause all its pa
kages ex
ept for two are known tobe sealed, and be
ause it is fairly large, diverse, and highlyreusable. Optimization improvements made to rt.jar havegreat potential impa
t on the performan
e of other Javaprograms.Jigsaw [25℄ and pBob [5℄ are two large, multi-pa
kaged serverappli
ations. Jigsaw is an obje
t-oriented web server ofW3C implemented in Java. Portable business obje
t ben
h-mark (pBOB) is a kernel of business logi
 inspired by theTPC-C ben
hmark spe
i�
ation2. SPECjvm98 [32℄ 
an-didates and ben
hmarks were 
hosen to represent 
lient-oriented programs. The analysis of appli
ation ben
hmarksassumes that all pa
kages are sealed. Note that this is avalid assumption whi
h does not 
ause se
urity ex
eptionsfor these appli
ations.
5.2 Static CountsTables 2, 3, and 4 present stati
 measurements regarding the
alls that reside inside rt.jar and the appli
ation pa
kagestested. For ea
h pa
kage, we 
ounted the number of virtual
all sites to non-final methods that appear in the pa
kage(
olumn Vs). We also 
ounted how many of these virtual
alls were intra-pa
kage 
alls, where both 
aller and the orig-inal 
allee belong to the same pa
kage; only su
h 
alls are
andidates to be sealed 
alls (
olumn Ps). The per
entageof virtual 
alls that were identi�ed as sealed, and that werealso identi�ed as monomorphi
 (a

ording to our algorithm)are presented next (
olumns Ss, Ms respe
tively). The ta-2In a

ordan
e with the TPC's fair use poli
y we note thatpBOB deviates from the TPC-C spe
i�
ation and is not
omparable to any oÆ
ial TPC result.

Table 1: Des
ription of ben
hmark programsType Ben
hmark Vt Des
riptionLibrary rt.jar 52909 Java 2 JDK release 1.2Server Jigsaw 8322 W3C's web server,version 2.0.3pBob 1390 Transa
tion pro
essingben
hmarkSPECjvm98 java
 2177 Java byte
ode 
ompilerBen
hmarks jess 828 Java expert shellsystemja
k 735 Parser generator
he
k 238 Tests JVM featuresdb 115 Sear
h and modifya databasempegaudio 115 De
ompress audio �lesSPECjvm98 nih 1684 Image manipulationCandidates raytra
e 869 Graphi
s raytra
ermpeg 260 MPEG video de
odingsi 208 Interpreter for a simplelanguage
st 193 java/util 
lass exer
isertmix 155 Dining philosophersri
hards 114 Threads running �veOS simulator versionsdeltablue 105 Deltablue algorithmVt Total number of Virtual 
alls to non-final methodsTable 2: Stati
 
ounts for \best" rt.jar pa
kagesPa
kage Vs Ps Ss Mssun/audio 324 65.7 59.3 55.2sun/awt/Albert 1202 89.5 45.5 44.8javax/swing/text/rtf 592 37.8 37.8 31.2java/awt/datatransfer 114 50.0 31.6 31.6sun/jdb
/odb
 1076 89.9 27.0 27.0javax/swing/text/html/parser 377 73.2 26.3 26.3javax/swing/tree 1113 73.9 25.9 25.9sun/se
urity/tools 1267 22.7 22.7 22.7sun/applet 688 39.5 20.5 20.5Vs Number of Virtual 
allsPs Per
entage of 
alls in Vs to methods of same Pa
kageSs Per
entage of 
alls in Vs identi�ed as SealedMs Per
entage of sealed and Monomorphi
 
alls in Vsbles are sorted a

ording to the per
entage of sealed 
alls(
olumn Ss), in des
ending order.There are 64 pa
kages in rt.jar with at least 100 virtual 
allsto non-final methods, of whi
h all but one are known tobe sealed. On average, 40% of the virtual 
alls in thesepa
kages are intra-pa
kage 
alls. More than half of thesepa
kages 
ontain at least 5% sealed 
alls, where the totalaverage of sealed 
alls is 8.5%. Furthermore, on averageabout 7.9% of the virtual 
alls are sealed and monomorphi
a

ording to our algorithm. Table 2 shows 9 of the pa
kagesthat 
ontain the highest per
entage of sealed 
alls (at least20%).Regarding tables 3 and 4, roughly half of all the virtual
alls that were analyzed are intra-pa
kage 
alls. Thus thereis a large potential for sealing many virtual 
alls. In gen-eral, the results obtained by our algorithm show that thereis a large varian
e in the number of sealed 
alls per pa
k-age | in some pa
kages nearly all (94.8%) virtual 
alls aresealed, whereas in other pa
kages less than 1% of the virtual
alls are sealed 
alls. For example, in pa
kage ri
hards/daithe entire 
lass hierar
hy is pa
kaged, ex
ept for the main



Table 3: Stati
 
ounts in pBob and Jigsaw pa
kagesPa
kage Vs Ps Ss MspBob (pre�x = 
om/ibm/sf/ )BOB/infra/Colle
tions 138 97.1 15.2 15.2BOB 1129 45.9 13.8 13.6BOB/infra/Fa
tory 123 77.2 0.0 0.0Jigsaw (pre�x = org/w3
/ )
vs 393 48.1 28.0 27.7www/http 735 77.0 14.3 14.3tools/resour
es/store 362 31.5 12.2 12.2www/proto
ol/http 407 45.0 11.3 10.8jigadm/editors 1491 20.1 8.5 8.5tools/widgets 491 25.9 7.1 6.7jigsaw/frames 950 25.1 3.7 3.7jigsaw/servlet 724 29.1 3.2 3.2jigsaw/�lters 430 12.3 2.8 2.8jigsaw/admin 452 40.0 2.4 2.4www/proto
ol/http/
a
he 502 36.9 1.2 1.2jigsaw/http 642 33.2 0.9 0.9tools/resour
es 743 78.6 0.4 0.4Average 45.2 7.8 7.7Table 4: Stati
 
ounts in ben
hmark pa
kagesPa
kage Vs Ps Ss MsSPECjvm98 Ben
hmarksmpegaudio 115 65.2 65.2 49.6
he
k 238 53.8 50.4 50.0jess/jess 828 84.7 36.0 36.0java
 2177 77.4 10.8 6.2ja
k 735 30.1 9.4 9.4db 115 24.3 1.7 1.7SPECjvm98 Candidatesri
hards/dai 114 95.6 94.7 93.9deltablue 105 86.7 85.7 50.5tmix 155 62.6 62.6 38.7si 208 64.4 58.2 58.2nih 1684 57.1 53.9 43.2
st 193 68.9 12.4 12.4mpeg 260 74.6 1.5 1.5raytra
e 869 98.2 0.0 0.0Average 67.4 38.8 32.2(Ri
hards) 
lass whi
h is publi
, resulting in a high per
ent-age of sealed 
alls. On the other extreme, in pa
kages ray-tra
e and 
om/ibm/sf/BOB/infra/Fa
tory all 
lasses andmethods are publi
, leaving no potential for sealed 
alls.In pa
kage org/w3
/tools/resour
es, all 56 
lasses and 407methods are publi
 ex
ept for two 
lasses and two methodswhi
h are pa
kaged, resulting in very few sealed 
alls.For some rt.jar and SPECjvm98 pa
kages, almost every vir-tual intra-pa
kage 
all is identi�ed by our algorithm as asealed 
all, leaving little prospe
t for more powerful algo-rithms. Overall, for most pa
kages analyzed in both rt.jarand appli
ation ben
hmarks, nearly all sealed 
alls are shownto be monomorphi
, a fa
t whi
h makes them good 
andi-dates for aggressive optimizations su
h as dire
t inlining.
5.3 Dynamic CountsTable 5 presents dynami
 measurements regarding 
alls thatwere exe
uted while running the SPECjvm98 
andidates andben
hmarks. These programs were exe
uted with size `10'to produ
e dynami
 pro�les. Therefore, the results do notfollow the oÆ
ial SPEC rules.

Table 5: Dynami
 
ounts in ben
hmark pa
kagesBen
hmark Vd Pd Sd MdSPECjvm98 Ben
hmarksmpegaudio 26650 99.8 6.2 6.1
he
k 68 29.8 1.2 1.2jess 20789 93.7 5.9 5.9java
 3416 62.0 14.4 9.6ja
k 3962 39.2 17.5 17.5db 326 22.5 0.0 0.0SPECjvm98 Candidatesri
hards 88031 100.0 100.0 88.2deltablue 46681 100.0 100.0 71.1tmix 71834 99.1 98.8 76.0si 10973 47.3 33.0 33.0nih 5 18.0 3.5 3.5
st 2124 21.6 21.1 21.1mpeg 21987 67.0 0.0 0.0raytra
e 60051 100.0 0.0 0.0Average 64.3 28.7 23.8Vd Number of invoked Virtual 
alls (in thousands)Pd Per
entage of 
alls in Vd to methods of same Pa
kageSd Per
entage of 
alls in Vd identi�ed as SealedMd Per
entage of sealed and Monomorphi
 
alls in VdDynami
 measurements are not presented for pBob and Jig-saw, due to their highly 
on�gurable and intera
tive na-ture. We 
onsidered all 
alls that originated from appli
a-tion pa
kages, sin
e they usually a

ounted for most of theexe
uted 
alls. For ea
h ben
hmark we 
ounted how manyvirtual 
alls to non-final methods were exe
uted (
olumnVd). Columns Pd, Sd and Md are analogous to the stati
measurements (Ps, Ss, Ms) in Tables 2, 3 and 4.Of all virtual 
alls exe
uted, a high per
entage (about 64%)were intra-pa
kage 
alls, and more than 28% were foundto be sealed 
alls by our algorithm. On the average, whilerunning a ben
hmark, our algorithm identi�ed as sealed 
allsnearly 45% of the intra-pa
kage 
alls that are exe
uted, withsome ben
hmarks rea
hing 
lose to 100%. As with the stati

ounts (see Se
tion 5.2), for many ben
hmarks all sealed
alls are also shown to be monomorphi
.The varian
e in the dynami
 results is huge. For threeben
hmarks (ri
hards, deltablue and tmix) almost all (morethan 98.8%) virtual 
alls are identi�ed as sealed. On theother extreme, in four ben
hmarks (
he
k, db, mpeg andraytra
e) a very small per
entage (less than 1.2%) of thevirtual 
alls were identi�ed as sealed.Several ben
hmarks (
he
k, nih, ja
k and db) exe
uted asigni�
ant number of 
alls originating from JDK pa
kages.In these 
ases, about 6.6% of the virtual 
alls from the JDKwere identi�ed as sealed and monomorphi
.
5.4 Statistical RemarksThe pro�ling data used (the standard java -prof tool) re-ports the number of times a 
ertain method 
alls anothermethod3. If one method 
ontains several 
all-sites, ea
h po-tentially targeted at the same target method, then the dis-tribution of the method-to-method frequen
y among these
all-sites is not known to us. However, there was no prob-3Note that for 
alls to or from native methods, the 
alleeor 
aller were reported as unknown. Su
h 
ases were verys
ar
e and had no signi�
ant e�e
t on the statisti
s.



lem to determine the a

urate invo
ation 
ount for almostall sealed 
alls that appear in the ben
hmarks.In order to build the CHG of a pa
kage we analyze the byte-
odes (the invokevirtual and invokeinterfa
e byte
odesin parti
ular) to lo
ate virtual 
all sites, and use the 
allee-
lass annotated at ea
h 
all-site. There may be a di�eren
ebetween the 
allee 
lass that appears in the Java sour
e 
ode,and the 
allee 
lass annotated in the byte
ode. This happenswhen the original 
allee 
lass does not 
ontain a de
larationof the 
alled method. In su
h 
ases, the annotated 
allee
lass is a super
lass of the original 
allee 
lass that 
ontainsthe required de
laration. It is 
onservative to use the anno-tated 
allee 
lass (see [13, page 264℄ for further details).
6. CONCLUDING REMARKSUsing the default a

ess permission of pa
kaged 
lasses, in-terfa
es and methods together with the ability to seal Javapa
kages, we are able to determine 
omplete sets of tar-gets for 
ertain 
alls. In this paper we have proposed atype of Class-Hierar
hy Analysis that identi�es sealed 
alls,whi
h for some 
ases identi�es nearly all intra-pa
kage 
allsas sealed 
alls. In some SPECjvm98 pa
kages, almost allintra-pa
kage 
alls are identi�ed by our algorithm as sealed,and a signi�
ant number of sealed 
alls are invoked whilerunning these ben
hmarks. In the widely used Java 2 rt.jarlibrary, about 10% of the pa
kages 
ontain a signi�
ant per-
entage of sealed 
alls (20{60%), and in more than halfof the pa
kages, at least 5% of all virtual 
alls are sealed
alls. For many pa
kages all sealed 
alls are also shown tobe monomorphi
.Our analysis supports inter-pro
edural analyses su
h as im-mutability and es
ape analysis, and enables aggressive opti-mizations su
h as dire
t inlining. It is eÆ
ient and stati
in nature | it 
an support both dynami
 
ompilers byen
oding the results as byte
ode annotations, and stati
pre-runtime 
ompilers or byte
ode-to-byte
ode transform-ers. The entire analysis and optimizations 
an be validatedinstantly at runtime when the pa
kage is �rst loaded from itsJAR �le by verifying the seal, version, and signature. Thereis no need for 
omplex dependen
e models and me
hanismsthat 
he
k multiple �les and timestamps, or for sophisti
atedre
ompilation te
hniques.Our algorithm a
tually identi�es sealed methods | meth-ods that 
an be 
alled only from within the same pa
kage,where ea
h su
h 
all is guaranteed to be a sealed 
all. Thisanalysis may be enhan
ed in several possible ways. Addi-tional 
alls might be sealed by 
onsidering the spe
i�
 
on-text of ea
h individual 
all site: data-
ow analysis 
an beused to better determine the possible types of the re
eiverobje
t. Re
ently, Sreedhar, Burke and Choi [33℄ presenteda framework whi
h addresses similar issues using data
owanalysis. Su
h te
hniques are signi�
antly more 
omplexthan our proposed CHA-type algorithm. Moreover our ex-periments show that in many 
ases our algorithm is ableto identify most of the 
alls that 
an potentially be sealed,leaving limited prospe
ts for more powerful tools.Another way to try and enhan
e our analysis is to use live-ness information (as in Rapid-Type Analysis [4℄). For in-stan
e, pa
kaged 
lasses or 
lasses whi
h do not have publi


or prote
ted 
onstru
tors 
an be 
onsidered live only ifthey are instantiated within the pa
kage. There is how-ever little hope of sealing additional 
alls this way, sin
ea publi
 
lass, that prevents a 
all from being sealed a
-
ording to our algorithm, must be 
onsidered live (if it hasa publi
 or prote
ted 
onstru
tor). Liveness information
an potentially redu
e the number of targets a sealed 
allis known to have. However, our algorithm shows that formany SPECjvm98 and rt.jar pa
kages, all sealed 
alls aremonomorphi
.A related problem is to try and identify all possible 
allersof a given method, whi
h is also very important for inter-pro
edural optimizations (e.g., inter-pro
edural redundan
yelimination, dead method removal [36℄). One 
ondition thatis suÆ
ient and eÆ
ient for this purpose is to 
he
k if themethod is a pa
kaged method in a sealed and signed pa
kage.Sealed methods also belong to this 
ategory, sin
e they 
anbe 
alled only from within their pa
kage (and from native
ode or via re
e
tion).
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