Locally private learning without interaction requires separation

Vitaly Feldman Google Research

with Amit Daniely Hebrew University Google

Local Differential Privacy (LDP)

[KLNRS '08]

 ϵ -LDP if for every user *i*, message *j* is sent using a local $\epsilon_{i,j}$ -DP randomizer $A_{i,j}$ and

$$\sum_{j} \epsilon_{i,j} \le \epsilon$$

Non-interactive LDP

PAC learning

PAC model [Valiant '84]: Let *C* be a set of binary classifiers over *X A* is a PAC learning algorithm for *C* if $\forall f \in C$ and distribution *D* over *X*, given i.i.d. examples $(x_i, f(x_i))$ for $x_i \sim D$, *A* outputs *h* such that w.h.p. $\Pr_{x \sim D}[h(x) \neq f(x)] \leq \alpha$

Distribution-specific learning: D is fixed and known to A

Statistical query model [Kearns '93]

P distribution over Z

 $Z = X \times \{\pm 1\}$ P is the distribution of (x, f(x)) for $x \sim D$

 $\phi_1: Z \to [0,1] |v_1 - \mathbf{E}_{z \sim P}[\phi_1(z)]| \le \tau$ τ is tolerance of the query; $\tau = 1/\sqrt{n}$

[KLNRS '08] Simulation with success prob. $1 - \beta$ ($\epsilon \le 1$)

- ϵ -LDP with *m* messages $\Rightarrow O(m)$ queries with $\tau = \Omega\left(\frac{\beta}{m}\right)$
- q queries with tolerance $\tau \Rightarrow \epsilon$ -LDP with $n = O\left(\frac{q \log(q/\beta)}{(\tau \epsilon)^2}\right)$ samples/messages Non-interactive if and only if queries are non-adaptive

Known results

C is SQ-learnable efficiently (non-adaptively) if and only if learnable efficiently with ϵ -LDP (non-interactively)

Examples:

- Yes: halfspaces/linear classifiers [Dunagan,Vempala '04]
- No: parity functions [Kearns '93]
- Yes, non-adaptively: Boolean conjunctions

[KLNRS 08] There exists C that is

- 1. SQ/LDP-learnable efficiently over the uniform distribution on $\{0,1\}^d$ but
- 2. requires exponential num. of samples to learn non-interactively by an LDP algorithm

[KLNRS 08]:

Does separation hold for distribution-independent learning?

Masked parity

Margin Complexity

Margin complexity of *C* over *X* - MC(*C*): smallest *M* such that exists an embedding $\Psi: X \to \mathbf{B}_d(1)$ under which every $f \in C$ is linearly separable with margin $\gamma \ge \frac{1}{M}$

Positive examples { $\Psi(x) | f(x) = +1$ } Negative examples { $\Psi(x) | f(x) = -1$ }

Lower bound

Thm: Let C be a negation-closed set of classifiers. Any non-interactive 1-LPD algorithm that learns C with error $\alpha < 1/2$ and success probability $\Omega(1)$ needs $n = \Omega\left(\mathbf{MC}(C)^{2/3}\right)$

Corollaries:

- Decision lists over $\{0,1\}^d$: $n = 2^{\Omega(d^{1/3})}$ [Buhrman,Vereshchagin,de Wolf '07] (Interactively) learnable with $n = poly\left(\frac{d}{\alpha\epsilon}\right)$ [Kearns '93]
- Linear classifiers over $\{0,1\}^d$: $n = 2^{\Omega(d)}$ [Goldmann,Hastad,Razborov '92; Sherstov '07] (Interactively) learnable with $n = poly\left(\frac{d}{\alpha\epsilon}\right)$ [Dunagan,Vempala '04]

Thm: For any C and distribution D there exists a non-adaptive ϵ -LPD algorithm that learns C over D with error α and success probability $1 - \beta$ using

$$n = \operatorname{poly}\left(\operatorname{MC}(C) \cdot \frac{\log(1/\beta)}{\alpha \epsilon}\right)$$

Instead of fixed D

- access to public unlabeled samples from D
- (interactive) LDP access to unlabeled samples from D

Lower bound holds against the hybrid model

Thm: Let C be a negation-closed set of classifiers. If exists a non-adaptive SQ algorithm that uses q queries of tolerance 1/q to learn C with error $\alpha < 1/2$ and success probability $\Omega(1)$ then $MC(C) = O(q^{3/2})$

Correlation dimension of *C* **- CSQdim(***C***) [F. '08]** : smallest *t* for which exist *t* functions $h_1, ..., h_t: X \to [-1,1]$ such that for every $f \in C$ and distribution *D* exists *i* such that $\left| \sum_{x \sim D} [f(x)h_i(x)] \right| \ge \frac{1}{t}$

Thm: [F. '08; Kallweit, Simon '11]:

 $MC(C) \le CSQdim(C)^{3/2}$

Proof

If exists a non-adaptive SQ algorithm A that uses q queries of tolerance 1/q to learn C with error $\alpha < 1/2$ then $CSQdim(C) \le q$

Let $\phi_1, ..., \phi_q: X \times \{\pm 1\} \rightarrow [0,1]$ be the (non-adaptive) queries of A Decompose

$$\phi(x,y) = \frac{\phi(x,1) + \phi(x,-1)}{2} + \frac{\phi(x,1) - \phi(x,-1)}{2} \cdot y$$

 $\mathop{\mathbf{E}}_{x \sim D}[\phi_i(x, f(x))] = \mathop{\mathbf{E}}_{x \sim D}[g_i(x)] + \mathop{\mathbf{E}}_{x \sim D}[f(x)h_i(x)]$

If
$$\left| \underset{x \sim D}{\mathbf{E}} [f(x)h_i(x)] \right| \le \frac{1}{q}$$
 then $\underset{x \sim D}{\mathbf{E}} [\phi_i(x, f(x))] \approx \underset{x \sim D}{\mathbf{E}} [\phi_i(x, -f(x))]$

If this holds for all $i \in [q]$, then the algorithm cannot distinguish between f and -fCannot achieve error < 1/2 Thm: For any C and distribution D there exists a non-adaptive ϵ -LPD algorithm that learns C over D with error $\alpha < 1/2$ and success probability $1 - \beta$ using $\log(1/\beta)$

$$n = \operatorname{poly}\left(\operatorname{MC}(C) \cdot \frac{\operatorname{log}(1/p)}{\alpha \epsilon}\right)$$

Margin complexity of *C* over *X* - MC(*C*): smallest *M* such that exists an embedding $\Psi: X \to \mathbf{B}_d(1)$ under which every $f \in C$ is linearly separable with margin $\gamma \ge \frac{1}{M}$

Thm [Arriaga,Vempala '99; Ben-David,Eiron,Simon '02]: For every every $f \in C$, random projection into $\mathbf{B}_d(1)$ for $d = O(\mathbf{MC}(C)^2 \log(1/\beta))$ ensures that with prob. $1 - \beta$, $1 - \beta$ fraction of points are linearly separable with margin $\gamma \ge \frac{1}{2 \operatorname{MC}(C)}$

Algorithm

Perceptron: if sign($\langle w_t, x \rangle$) $\neq y$ then update $w_{t+1} \leftarrow w_t + yx$ Expected update: $\underset{(x,y)\sim P}{\mathbf{E}}[yx \mid \text{sign}(\langle w_t, x \rangle) \neq y]$ $\begin{bmatrix} \mathbf{E}\\(x,y)\sim P \begin{bmatrix} yx \cdot \mathbb{1}(\text{sign}(\langle w_t, x \rangle) \neq y) \end{bmatrix} / \underbrace{\Pr_{(x,y)\sim P}[\text{sign}(\langle w_t, x \rangle) \neq y]}_{(x,y)\sim P} \text{ scalar} \geq \alpha \\ \end{bmatrix} \text{ scalar} \geq \alpha \\ \begin{bmatrix} \mathbf{E}\\(x,y)\sim P \begin{bmatrix} x \cdot \frac{y - \text{sign}(\langle w_t, x \rangle)}{2} \end{bmatrix} = \underbrace{\frac{\mathbf{E}\\(x,y)\sim P}[xy] + \underbrace{\mathbf{E}}\\(x,y)\sim P}[x \text{ sign}(\langle w_t, x \rangle)]}_{\text{non-adaptive}} \text{ independent of the label}$

Estimate the mean vector with ℓ_2 error

- LDP [Duchi,Jordan,Wainright '13]
- SQs [F.,Guzman,Vempala '15]

Conclusions

- New approach to lower bounds for non-interactive LDP

 Reduction to margin-complexity lower bounds
- Lower bounds for classical learning problems
- Same results for communication constrained protocols
 Also equivalent to SQ
- Interaction is necessary for learning
- Open:
 - Distribution-independent learning in poly(MC(C))
 - Lower bounds against 2 + round protocols
 - Stochastic convex optimization

https://arxiv.org/abs/1809.09165

