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PAC learning 
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PAC model [Valiant ‘84]: Let 𝐶 be a set of binary classifiers over 𝑋 
𝐴 is a PAC learning algorithm for 𝐶 if  ∀𝑓 ∈ 𝐶 and distribution 𝐷 over 𝑋,  
given i.i.d. examples 𝑥𝑖 , 𝑓 𝑥𝑖  for 𝑥𝑖 ∼ 𝐷, 𝐴 outputs ℎ such that w.h.p. 

𝐏𝐫
𝑥∼𝐷
ℎ 𝑥 ≠ 𝑓(𝑥) ≤ 𝛼 

Distribution-specific learning: 𝐷 is fixed and known to 𝐴 



Statistical query model [Kearns ‘93] 

[KLNRS ‘08] Simulation with success prob. 1 − 𝛽  (𝜖 ≤ 1) 

• 𝜖-LDP with 𝑚 messages      ⇒    𝑂 𝑚  queries with 𝜏 = Ω
𝛽

𝑚
 

• 𝑞 queries with tolerance 𝜏  ⇒    𝜖-LDP with 𝑛 = 𝑂
𝑞 log 𝑞/𝛽

𝜏𝜖 2
 samples/messages 

 Non-interactive if and only if queries are non-adaptive 

     𝑣1 − 𝐄𝑧∼𝑃 𝜙1 𝑧 ≤ 𝜏 
  𝜏 is tolerance of the query; 𝜏 = 1/ 𝑛 

𝜙𝑞  

𝑣1 

𝜙2 

𝑣2 

𝑣𝑞 

𝜙1 

 SQ algorithm 

𝜙1: 𝑍 → 0,1  

 𝑃 

SQ oracle 

𝑃 distribution over 𝑍 
 

𝑍 = 𝑋 × {±1} 
𝑃 is the distribution of 

(𝑥, 𝑓 𝑥 ) for 𝑥 ∼ 𝐷 



Known results 

Examples: 

• Yes: halfspaces/linear classifiers [Dunagan,Vempala ‘04] 
• No: parity functions [Kearns ‘93] 
• Yes, non-adaptively: Boolean conjunctions 
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𝐶 is SQ-learnable efficiently (non-adaptively) if and only if  

learnable efficiently with 𝜖-LDP (non-interactively) 

[KLNRS 08] There exists 𝐶 that is  

1. SQ/LDP-learnable efficiently over the uniform distribution on 0,1 𝑑 but 
2. requires exponential num. of samples to learn non-interactively by an LDP algorithm 

Masked parity 

[KLNRS 08]:  

Does separation hold for  

distribution-independent learning? 
 

 



Margin Complexity 
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Margin complexity of 𝐶 over 𝑋 - 𝐌𝐂(𝐶): 
smallest 𝑀 such that exists an embedding Ψ:𝑋 → 𝐁𝑑(1) under 

which every 𝑓 ∈ 𝐶 is linearly separable with margin 𝛾 ≥
1

𝑀
 

 
Positive examples  Ψ 𝑥   𝑓 𝑥 = +1}  
Negative examples  Ψ 𝑥   𝑓 𝑥 = −1} 



Lower bound 
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Thm: Let 𝐶 be a negation-closed set of classifiers.  

Any non-interactive 1-LPD algorithm that learns 𝐶  
with error 𝛼 < 1/2 and success probability Ω 1  needs 

𝑛 = Ω 𝐌𝐂 𝐶 2/3  

Corollaries: 

• Decision lists over 0,1 𝑑: 𝑛 = 2Ω 𝑑
1/3

 
      [Buhrman,Vereshchagin,de Wolf ‘07] 

(Interactively) learnable with 𝑛 = poly
𝑑

𝛼𝜖
 [Kearns ’93] 

 

• Linear classifiers over 0,1 𝑑: 𝑛 = 2Ω 𝑑  
     [Goldmann,Hastad,Razborov ‘92; Sherstov ‘07] 

(Interactively) learnable with 𝑛 = poly
𝑑

𝛼𝜖
 [Dunagan,Vempala ’04] 



Upper bound 
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Thm: For any 𝐶 and distribution 𝐷 there exists a non-adaptive 𝜖-LPD algorithm  

that learns 𝐶 over 𝐷 with error 𝛼 and success probability 1 − 𝛽 using  

𝑛 = poly 𝐌𝐂 𝐶 ⋅
log 1/𝛽

𝛼𝜖
  

Instead of fixed 𝐷 

• access to public unlabeled samples from 𝐷 

• (interactive) LDP access to unlabeled samples from 𝐷 

 

Lower bound holds against the hybrid model 
 



Lower bound technique 
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Thm: Let 𝐶 be a negation-closed set of classifiers.  

If exists a non-adaptive SQ algorithm that uses 𝑞 queries  

of tolerance 1/𝑞 to learn 𝐶 with error 𝛼 < 1/2 and success probability Ω 1  then 

𝐌𝐂 𝐶 = 𝑂 𝑞3/2  

Correlation dimension of 𝐶 - CSQdim(𝐶) [F. ’08] : smallest 𝑡 for which exist 𝑡 functions 
ℎ1, … , ℎ𝑡: 𝑋 → [−1,1] such that for every 𝑓 ∈ 𝐶 and distribution 𝐷 exists 𝑖 such that  

𝐄
𝑥∼𝐷
𝑓 𝑥 ℎ𝑖 𝑥 ≥

1

𝑡
 

Thm: [F. ’08; Kallweit,Simon ‘11]:  
𝐌𝐂 𝐶 ≤ CSQdim 𝐶 3/2 



Proof 

Let 𝜙1, … , 𝜙𝑞: 𝑋 × ±1 → 0,1  be the (non-adaptive) queries of 𝐴 

Decompose 

𝜙 𝑥, 𝑦 =
𝜙 𝑥, 1 + 𝜙 𝑥,−1

2
+
𝜙 𝑥, 1 − 𝜙 𝑥,−1

2
⋅  𝑦 

 

 
𝐄
𝑥∼𝐷
𝜙𝑖(𝑥, 𝑓 𝑥 ) = 𝐄

𝑥∼𝐷
𝑔𝑖 𝑥 + 𝐄

𝑥∼𝐷
𝑓 𝑥 ℎ𝑖 𝑥  

 

If  𝐄
𝑥∼𝐷
𝑓 𝑥 ℎ𝑖 𝑥 ≤

1

𝑞
 then 𝐄

𝑥∼𝐷
𝜙𝑖(𝑥, 𝑓 𝑥 ) ≈ 𝐄

𝑥∼𝐷
𝜙𝑖(𝑥, −𝑓 𝑥 )  

 

If this holds for all 𝑖 ∈ [𝑞], then the algorithm cannot distinguish between 𝑓 and −𝑓  

Cannot achieve error < 1/2 
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If exists a non-adaptive SQ algorithm 𝐴 that uses 𝑞 queries  

of tolerance 1/𝑞 to learn 𝐶 with error 𝛼 < 1/2 then 

CSQdim 𝐶 ≤ 𝑞 

ℎ 𝑔 



Upper bound 
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Thm: For any 𝐶 and distribution 𝐷 there exists a non-adaptive 𝜖-LPD algorithm  

that learns 𝐶 over 𝐷 with error 𝛼 < 1/2 and success probability 1 − 𝛽 using  

𝑛 = poly 𝐌𝐂 𝐶 ⋅
log 1/𝛽

𝛼𝜖
  

Margin complexity of 𝐶 over 𝑋 - 𝐌𝐂(𝐶): 
smallest 𝑀 such that exists an embedding Ψ:𝑋 → 𝐁𝑑(1) under which every 𝑓 ∈ 𝐶 is 

linearly separable with margin 𝛾 ≥
1

𝑀
 

Thm [Arriaga,Vempala ’99; Ben-David,Eiron,Simon ‘02]:  
For every every 𝑓 ∈ 𝐶, random projection into 𝐁𝑑(1) for 𝑑 = 𝑂(𝐌𝐂 𝐶 2log(1/𝛽))  

ensures that with prob. 1 − 𝛽, 1 − 𝛽 fraction of points are linearly separable with margin 𝛾 ≥
1

𝟐 𝐌𝐂 𝐶
 



Algorithm 

Perceptron: if sign( 𝑤𝑡 , 𝑥 ) ≠ 𝑦 then update 𝑤𝑡+1 ← 𝑤𝑡 + 𝑦𝑥 

Expected update: 𝐄
(𝑥,𝑦)∼𝑃

𝑦𝑥 | sign( 𝑤𝑡, 𝑥 ) ≠ 𝑦  

|| 
𝐄

(𝑥,𝑦)∼𝑃
𝑦𝑥 ⋅  𝟙(sign( 𝑤𝑡 , 𝑥 ) ≠ 𝑦) / 𝐏𝐫

(𝑥,𝑦)∼𝑃
sign( 𝑤𝑡, 𝑥 ) ≠ 𝑦  

                                                ||  

𝐄
(𝑥,𝑦)∼𝑃

𝑥 ⋅
𝑦 − sign 𝑤𝑡 , 𝑥

2
                                                   

 

 

Estimate the mean vector with ℓ2 error 

• LDP [Duchi,Jordan,Wainright ‘13] 

• SQs [F.,Guzman,Vempala ‘15] 
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scalar ≥ 𝛼 

independent of the label non-adaptive 

=
𝐄
𝑥,𝑦 ∼𝑃

𝑥𝑦 + 𝐄
𝑥,𝑦 ∼𝑃

𝑥 sign 𝑤𝑡 , 𝑥

2
 



Conclusions 

• New approach to lower bounds for non-interactive LDP 

o Reduction to margin-complexity lower bounds 

• Lower bounds for classical learning problems 

• Same results for communication constrained protocols 

o Also equivalent to SQ 

• Interaction is necessary for learning 

• Open: 

o Distribution-independent learning in poly 𝐌𝐂 𝐶  

o Lower bounds against 2 + round protocols 

o Stochastic convex optimization 

 

https://arxiv.org/abs/1809.09165 
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