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Local Differential Privacy (LDP)
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Non-interactive LDP
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PAC learning
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PAC model [Valiant ‘84]: Let C be a set of binary classifiers over X
Ais a PAC learning algorithm for C if Vf € C and distribution D over X,
given i.i.d. examples (x;, f(x;)) for x; ~ D, A outputs h such that w.h.p.

Pll')[h(x) +f()] < «a
N -

Distribution-specific learning: D is fixed and known to A




Statistical query model [Kearns ‘93]
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$p1:Z = [0,1] |v1 —E,pl1 (D)l <7
T is tolerance of the query; 7 = 1/4/n

[KLNRS ‘o8] Simulation with success prob. 1 - (e < 1)
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« €e-LDP with m messages = 0(m) queries with 7 = Q (E)

qlog(q/p
(te)?

Non-interactive if and only if queries are non-adaptive

« g queries with tolerance t = e-LDPwithn =0 ( ) samples/messages



Known results

C is SQ-learnable efficiently (non-adapftively) if and only if
learnable efficiently with e-LDP (non-interactively)

Examples:
Yes: halfspaces/linear classifiers [Dunagan,Vempala ‘04]
No: parity functions [Kearns ‘93]
Yes, non-adaptively: Boolean conjunctions

[KLNRS 08] There exists € that is
1. SQ/LDP-learnable efficiently over the uniform distribution on {0,1}¢ but
2. requires exponential num. of samples to learn non-interactively by an LDP algorithm

[KLNRS 08]:
E{é @ Does separation hold for
distribution-independent learninge

Masked parity




Margin Complexity

- - /Margin complexity of C over X - MC(C): \
smallest M such that exists an embedding ¥: X — B;(1) under

: - . . 1
which every f € C is linearly separable with marginy = —

Positive examples { W(x) | f(x) = +1}
+ Negative examples { ¥(x) | f(x) = —1}
\ w




Thm: Let € be a negation-closed set of classifiers.
Any non-interactive 1-LPD algorithm that learns C
with error ¢ < 1/2 and success probability Q(1) needs

n=20 (MC(C)2/3)

Corollaries:
. Decision lists over {0,1}¢: n = 202(a*?)
[Buhrman,Vereshchagin,de Wolf ‘07]

(Interactively) learnable with n = poly (%) [Kearns '93]

« Linear classifiers over {0,1}4; n = 2@
[Goldmann,Hastad,Razborov ‘92; Sherstov ‘07]

(Interactively) learnable with n = poly (%) [Dunagan,Vempala '04]
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Upper bound

Thm: For any € and distribution D there exists a non-adaptive e-LPD algorithm
that learns € over D with error &« and success probability 1 — g using

n = poly <MC(C) M)
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Instead of fixed D
« qaccess to public unlabeled samples from D
* (interactive) LDP access to unlabeled samples from D

Lower bound holds against the hybrid model



Lower bound technique

Thm: Let C be a negation-closed set of classifiers.

If exists a non-adaptive SQ algorithm that uses g queries

of tolerance 1/q to learn C with error a < 1/2 and success probability Q(1) then
MC(C) = 0(q3/?)
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Correlation dimension of C - CSQdim(C) [F.’08] : smallest t for which exist t functions
hq, ..., he: X — [—1,1] such that for every f € C and distribution D exists i such that

1
EFRGo1| = 7
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Thm: [F. '08; Kallweit,Simon ‘11]:
MC(C) < CSQdim(C)3/?




If exists a non-adaptive SQ algorithm A that uses g queries
of tolerance 1/q to learn € with error a < 1/2 then
CSQdim(C) < g

Let ¢y, ..., Py X X {£1} - [0,1] be the (non-adapftive) queries of A

Decompose
,1) + ,—1 ,1) — ,—1
qb(x,y)zcb(x ) qu(x )+¢(x ) 2¢(x ) y
g s

E G fON] = E [0:(01+ E [FeOh (0]

| B FCORGO) <3 then E [giCe fO] = E, [diGe—f ()]

If this holds for all i € [g], then the algorithm cannot distinguish between f and —f
Cannot achieve error < 1/2



Upper bound

Thm: For any € and distribution D there exists a non-adaptive e-LPD algorithm
that learns € over D with error ¢ < 1/2 and success probability 1 — 8 using

n = poly <MC(C) M)
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(" )
Margin complexity of C over X - MC(C):

smallest M such that exists an embedding W: X — B;(1) under which every f € C is
linearly separable with margin y > %

J
Thm [Arriaga,Vempala '99; Ben-David,Eiron,Simon ‘02]:
For every every f € C, random projection into B, (1) for d = 0(MC(C)?log(1/8))
ensures that with prob. 1 — 8, 1 — f fraction of points are linearly separable with margin y = -— B




Algorithm

Percepitron: if sign({wy, x)) #+ y then update w;,; <« w; + yx

Expected update: (x£~P[yx | sign({wy, x)) # y]
|

E [yx- 1(sign({w;, x)) # y)]/( Pr |[sign({w¢, x)) # y| scalar>a

| |
E E
. y — sign((we, )] _ Gager ) T g pl* SiENUWE 1))
X —
(x’y)~P 2 — v — 2 _

' —~~
non-adaptive independent of the label

Estimate the mean vector with £, error
e LDP [Duchi,Jordan,Wainright “13]
e SQS [F.,.Guzman,Vempala ‘5]
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Conclusions

New approach to lower bounds for non-interactive LDP
o Reduction to margin-complexity lower bounds

Lower bounds for classical learning problems
Same results for communication constrained protocols
o Also equivalent to SQ
Interaction is necessary for learning
Open:
o Distribution-independent learning in poly(MC(C))

o Lower bounds against 2 4+ round protocols
o Stochastic convex optimization
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